AlphaPC 164UX/BX Motherboard

Technical Reference Manual

Preliminary

Notice

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

Samsung reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

This publication does not convey to a purchaser of semiconductor devices described herein any license under the patent rights of Samsung or others.

AlphaPC 164UX/BX Motherboard Technical Reference Manual

©1998 Samsung Electronics

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung Electronics.

Samsung and Samsung logo are trademarks of Samsung Electronics Co., Ltd.

Alpha, Digital Semiconductor are trademarks of Digital Equipment Corporation.

FaxBACK and Intel are registered trademarks of Intel Corporation.

GRAFOIL is a registered trademark of Union Carbide Corporation.

Microsoft, MS-DOS, Windows, and Windows 95 are registered trademarks and Windows NT is a trademark of Microsoft Corporation.

Dallas is a registered trademark of Dallas Semiconductor Corporation.

Q is a registered trademark of Quality Semiconductor,Inc.

SYMBIOS is a registered trademark of Symbios,Inc.

AMD is a registered trademark of Advanced Micro Devices,Inc.

SMC is a registered trademark of Standard Microsystems Corporation.

All other trademarks and registered trademarks are the property of their respective owners.

San #24 Nongseo-ri, Kiheung-eup Yongin-city, Kyungki-do, Korea 449-900

FAX: 82-331-209-4492 TEL: 82-331-209-3282

Printed in the Republic of Korea

Contents

Preface

1.1	System Components and Features
1.1.1	Digital Semiconductor 21174 Core Logic Chip
1.1.2	Memory Subsystem
1.1.3	L3 Bcache Subsystem Overview
1.1.4	PCI Interface Overview
1.1.5	ISA Interface Overview
1.1.6	Miscellaneous Logic
1.2	Software Support
1.2.1	ARCSBIOS Windows NT Firmware
1.3	Hardware Design Support
2.1	
	•
-	AlphaPC 164UX Jumper Configuration
2.1	AlphaPC 164UX Jumper Configuration
2.1 2.2	AlphaPC 164UX Jumper Configuration CPU Speed Selection (Option 1,2,3,&4). Bcache Size Jumpers (Option 14,15)
2.1 2.2 2.3	AlphaPC 164UX Jumper Configuration CPU Speed Selection (Option 1,2,3,&4). Bcache Size Jumpers (Option 14,15). Boot Option Jumper (Option 11). AlphaPC 164UX Connector Pinouts.
2.1 2.2 2.3 2.4 2.5 2.5.1	AlphaPC 164UX Jumper Configuration CPU Speed Selection (Option 1,2,3,&4). Bcache Size Jumpers (Option 14,15). Boot Option Jumper (Option 11). AlphaPC 164UX Connector Pinouts PCI Bus Connector Pinouts.
2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2	AlphaPC 164UX Jumper Configuration CPU Speed Selection (Option 1,2,3,&4). Bcache Size Jumpers (Option 14,15). Boot Option Jumper (Option 11). AlphaPC 164UX Connector Pinouts PCI Bus Connector Pinouts ISA Expansion Bus Connector Pinouts
2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3	AlphaPC 164UX Jumper Configuration CPU Speed Selection (Option 1,2,3,&4). Bcache Size Jumpers (Option 14,15). Boot Option Jumper (Option 11). AlphaPC 164UX Connector Pinouts. PCI Bus Connector Pinouts. ISA Expansion Bus Connector Pinouts. SDRAM DIMM Connector Pinouts.
2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3	AlphaPC 164UX Jumper Configuration CPU Speed Selection (Option 1,2,3,&4). Bcache Size Jumpers (Option 14,15). Boot Option Jumper (Option 11). AlphaPC 164UX Connector Pinouts. PCI Bus Connector Pinouts. ISA Expansion Bus Connector Pinouts. SDRAM DIMM Connector Pinouts. EIDE Drive Bus Connector Pinouts.
2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4	AlphaPC 164UX Jumper Configuration CPU Speed Selection (Option 1,2,3,&4). Bcache Size Jumpers (Option 14,15). Boot Option Jumper (Option 11). AlphaPC 164UX Connector Pinouts. PCI Bus Connector Pinouts. ISA Expansion Bus Connector Pinouts. SDRAM DIMM Connector Pinouts. EIDE Drive Bus Connector Pinouts. Diskette Drive Bus Connector Pinouts.
2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	AlphaPC 164UX Jumper Configuration CPU Speed Selection (Option 1,2,3,&4). Bcache Size Jumpers (Option 14,15). Boot Option Jumper (Option 11). AlphaPC 164UX Connector Pinouts. PCI Bus Connector Pinouts. ISA Expansion Bus Connector Pinouts. SDRAM DIMM Connector Pinouts. EIDE Drive Bus Connector Pinouts. Diskette Drive Bus Connector Pinouts. Parallel Bus Connector Pinouts.
2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4	AlphaPC 164UX Jumper Configuration CPU Speed Selection (Option 1,2,3,&4). Bcache Size Jumpers (Option 14,15). Boot Option Jumper (Option 11). AlphaPC 164UX Connector Pinouts. PCI Bus Connector Pinouts. ISA Expansion Bus Connector Pinouts. SDRAM DIMM Connector Pinouts. EIDE Drive Bus Connector Pinouts. Diskette Drive Bus Connector Pinouts.

	2.5.10 2.5.11 2.5.12 2.5.13 2.5.14 2.5.15 2.5.16 2.5.17 2.5.18	Narrow SCSI Bus Connector Fast and Wide SCSI Bus Connector 10/100 Mbit Ethernet Connector Pinouts Speaker Connector Pinouts Microprocessor Fan Power Connector Pinouts Pin Power LED Connector Pinouts IDE Drive LED Connector Pinouts Reset Switch Connector Pinouts Soft Power Connector Pinouts	2-13 2-14 2-14 2-15 2-15 2-15 2-16 2-16 2-16
3	2.5.19 Funct	SCSI LED Connector Pinouts tional Description	2–16
	3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.4 3.5 3.6 3.7 3.8	AlphaPC 164UX Bcache Interface Digital Semiconductor 21174 Core Logic Chip 21174 Chip Overview Main Memory Interface PCI Devices System-IO (SIO) Chip Ethernet LAN Controller Chip PCI-Ultra SCSI (Fast-20) I/O Processor Chip PCI Expansion Slots ISA Bus Devices Combination Controller XD Bus Device. ISA Expansion Slots ISA I/O Address Map Flash ROM Address Map Interrupts. System Clocks Reset and Initialization DC Power Distribution.	3-2 3-3 3-4 3-6 3-6 3-7 3-8 3-8 3-9 3-10 3-10 3-10 3-11 3-15 3-17 3-18
4	Upgra	ading the AlphaPC 164UX	
	4.1 4.2 4.2.1 4.2.2 4.2.3 4.2.4	Upgrading SDRAM Memory Increasing Microprocessor Speed. Preparatory Information Required Tools Removing the 21164 Microprocessor Installing the 21164 Microprocessor	4-1 4-1 4-2 4-2 4-2 4-3

5 **Power and Environmental Requirements** 5.1 5 - 15.2 5-1 5.3 5-2 5.3.1 5-2 5.3.2 Board Measurements and Hole Locations..... 5-3 5.3.3 Board Vertical Clearance..... 5-4 5.3.4 5-5 System Address Space A.1 Address Map..... A-1 A.2 PCI Address Space..... A-6A.3 A-7 A.3.1 A - 10A.4 A-12 A.4.1 A - 14A.5 A-15 A.6 A-15 A.7 A-17 Hardware Extension Register (HAE_MEM)..... A.7.1 A - 18A.7.2 A-18 PCI Sparse I/O Space..... A.8 A - 23A.8.1 A - 23A.8.2 A-23 A.9 PCI Configuration Space A-26 A.10 A - 31A.11 A - 31A.12 A - 32A.13 A - 37A.14 A - 38Scatter-Gather TLB..... A.15 A - 40A.15.1 A - 42A.15.2 A - 42A.16 A-44 A.16.1 Peripheral Component Architecture Compatibility Addressing and Holes... A - 45A.16.2 A - 45В **Supporting Products** B.1 Memory..... B-1 **B.2** B-3 Power Supply **B.3** B-3

FLECTRONICS

	B.4	Enclosure	B-4
С	Supp	ort, Products, and Documentation	

Index

Figures

1–1	AlphaPC 164UX Functional Block Diagram	1-2
2–1	AlphaPC 164UX Jumper/Connector Location	2-2
2–2	AlphaPC 164UX Configuration Jumpers	2-4
3–1	AlphaPC 164UX L3 Bcache Array	3–2
3–2	Main Memory Interface	3–3
3–3	AlphaPC 164UX PCI Bus Devices	3–5
3–4	AlphaPC 164UX ISA Bus Devices	3–8
3–5	Interrupt Logic	3–12
3–6	AlphaPC 164UX System Clocks	3–16
3–7	System Reset and Initialization	3–17
3–8	AlphaPC 164UX Power Distribution	3–19
4–1	Fan/Heat-Sink Assembly	4–4
5–1	Board measurement and Hole Position Diagram	5–3
5–2	Board Vertical Clearance Diagram	5–4
5–3	ATX I/O Shield Dimensions	5–5
A-1	Address Space Overview	A-5
A-2	Memory Remapping	A-6
A-3	21164 Address Space Configuration	A-8
A-4	21164 and DMA Read and Write Transactions	A-9
A-5	System Address Map	A-11
A-6	21174 CSR Space	A-12
A-7	Byte/Word PCI Space	A-13
A-8	Dense-Space Address Generation	A-17
A-9	·	A-21
A-10		A-22
A-11	PCI Memory Sparse-Space Address Generation – Region 3	A-22
A-12	PCI Sparse I/O Space Address Translation (Region A, Lower 32MB)	A-25
A-13	PCI Sparse I/O Space Address Translation (Region B, Higher Area)	A-25
A-14	PCI Configuration Space Definition (Sparse)	A-27
A-15	PCI Configuration Space Definition (Dense)	A-27
A-16	PCI Bus Hierarchy	A-30
A-17	PCI DMA Addressing Example	A-35
A-18	PCI Target Window Compare	A-36
A-19	Scatter-Gather PTE Format	A-39
A-20	Scatter-Gather Associative TLB	A-41
A-21	Scatter-Gather Map Translation	A-43
A-22	Default PCI Window Allocation	A-44
A-23	mem_cs_I Decode Area	A-46
Λ_24	mem es II ogic	Λ_47

UXTables

1–1	AlphaPC 164UX SDRAM Memory Configurations	1–3
2–1	AlphaPC 164UX Jumper/Connector List	2-3
2-2	PCI Bus Connector Pinouts	2–5
2-3	ISA Expansion Bus Connector Pinouts (J10)	2–8
2–4	SDRAM DIMM Connector Pinouts (U3 through U8)	2–9
2–5	EIDE Drive Bus Connector Pinouts (J24)	2–10
2–6	Diskette (Floppy) Drive Bus Connector Pinouts (J33)	2–11
2–7	Parallel Bus Connector Pinouts (J13)	2–11
2–8	COM1/COM2 Serial Line Connector Pinouts (J12)	2–12
2–9	Keyboard/Mouse Connector Pinouts (J25)	2–12
2–10	Input Power Connector Pinouts (J18)	2–13
2–11	Narrow SCSI Bus Connector (J16)	2–13
2–12	Fast and Wide SCSI Bus Connector Pinouts(J15))	2–14
2–13	10/100 Mbit Ethernet Connector Pinouts (J34)	2–14
2–14	Speaker Connector Pinouts (J23).	2–15
2–15	Microprocessor Fan Power Connector Pinouts (J35)	2–15
2–16	Power LED Connector Pinouts (J31)	2–15
2–10	IDE Drive LED Connector Pinouts (J29).	2–13
2–17	Reset Switch Connector Pinouts (J37)	2–16
2–10	Soft Power Switch Connector Pinouts (J36)	2–16
2–19	SCSI LED Connector Pinouts (J17)	2–16
2–20 3–1		3–10
3–1	ISA I/O Address Map	
-	AlphaPC 164UX System Interrupts	3–13
3–3	ISA Interrupts	3–14
5–1	Power Supply DC Current Requirements	5–1
5–2	AlphaPC 164UX Motherboard Environmental Requirements	5–2
A-1	Physical Address Map (Byte/Word Mode Disabled)	A-1
A-2	Physical Address Map (Byte/Word Mode Enabled)	A-2
A-3	21164 Byte/Word Addressing	A-14
A-4	21164 Byte/Word Translation Values	A-14
A-5	Int4_valid and 21164 Address Relationship	A-19
A–6	PCI Memory Sparse-Space Read/Write Encodings	A-20
A-7	PCI Address Mapping	A-21
A–8	PCI Sparse I/O Space Read/Write Encodings	A-24
A-9	CPU Address to IDSEL Conversion	A-28
A-10	PCI Configuration Space Read/Write Encodings	A-29
A-11	Hardware and Miscellaneous Address Map	A-31
A-12	PCI Target Window Mask Register Fields	A-33
A-13	Direct-Mapped PCI Target Address Translation	A-37
A-14	Scatter-Gather Mapped PCI Target Address Translation	A-39
A-15	PCI Window Power-Up Configuration	A-45
B-1	Samsung DIMM Part Number List	B-1
B-2	VisionTek DIMM Part Number List	B-2
B-3	Viking Components DIMM Part Number List	B-2
B-4	QesTec DIMM Part Number List	B-2
B-5	Dense-Pac Microsystems DIMM Part Number List	B-3

Preface

Overview

This manual describes the DIGITAL AlphaPC 164UX/BX motherboard, a module for computing systems based on the Samsung Alpha 21164 microprocessor and the Digital Semiconductor 21174 core logic chip.

N Difference between AlphaPC 164UX and 164BX

- AlphaPC 164UX motherboard has the Ethernet LAN Controller and Ultra Wide SCSI Controller which are not on AlphaPC 164BX motherboard.
- The size of AlphaPC 164BX motherboard's L3 cache is 2MB.
- The size of AlphaPC 164UX motherboard's L3 cache is 2MB or 4MB.
- Except the above, AlphaPC 164UX motherboard and 164BX motherboard are the same.
- The following sections are about AlphaPC 164UX motherboard only.

Audience

This manual is intended for system designers and others who use the AlphaPC 164UX motherboard to design or evaluate computer systems based on the Samsung Alpha 21164 microprocessor and the Digital Semiconductor 21174 core logic chip.

Scope

This manual describes the features, configuration, functional operation, and interfaces of the AlphaPC 164UX motherboard. This manual does not include specific bus specifications (for example, PCI or ISA buses). Additional information is available in the AlphaPC 164UX schematics, program source files, and the appropriate vendor and IEEE specifications. See Appendix C for information on how to order related documentation and obtain additional technical support.

Manual Organization

As outlined on the next page, this manual includes the following chapters, appendixes, and an index.

- Chapter 1, Introduction to the AlphaPC 164UX motherboard, is an overview of the AlphaPC 164UX motherboard, including its components, features, and uses.
- Chapter 2, System Configuration and Connectors, describes the user-environment configuration, board connectors and functions, and jumper functions. It also identifies jumper and connector locations.
- Chapter 3, Functional Description, provides a functional description of the AlphaPC 164UX motherboard, including the 21174 core logic chip, L3 backup cache (Bcache) and memory subsystems, system interrupts, clock and power subsystems, and peripheral component interconnect (PCI) and Industry Standard Architecture (ISA) devices.
- Chapter 4, Configuring the ARCSBIOS for Windows NT, describes the ARCS-BIOS and gives instruction to begin the installation of Windows NT
- Chapter 5, Upgrading the AlphaPC 164UX, describes how to upgrade the AlphaPC 164UX motherboard's DRAM memory and microprocessor speed.
- Chapter 6, Troubleshooting, describes information about trouble shooting hardware and software during AlphaPC 164UX startup.
- Chapter 7, Power and Environmental Requirements, describes the AlphaPC 164UX power and environmental requirements and provides board dimensions.
- Appendix A, System Address Space, describes the mapping of the 40-bit processor address space into memory and I/O space addresses. It also lists the physical PCI address spaces and regions, including the 21174 operating registers and PCI/ISA device registers.
- Appendix B, Supporting Products, lists sources for components and accessories not included with the AlphaPC 164UX motherboard.
- Appendix C, Support, Products, and Documentation, describes how to obtain Samsung Alpha information and technical support, and how to order Samsung Semiconductor products and associated literature.

Conventions

This section defines product-specific terminology, abbreviations, and other conventions used throughout this manual.

Abbreviations

Register Access

The following list describes the register bit and field abbreviations:

Bit/Field Abbreviation Description

RO (read only)	Bits and fields specified as RO can be read but not written.
RW (read/write)	Bits and fields specified as RW can be read and written.
WO (write only)	Bits and fields specified as WO can be written but not read.

• Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiples and have the following values.

```
K = 2^{10} (1024)

M = 2^{20} (1,048,576)

G = 2^{30} (1,073,741,824)
```

For example:

```
2KB = 2 kilobytes = 2 \times 2^{10} bytes

4MB = 4 megabytes = 4 \times 2^{20} bytes

8GB = 8 gigabytes = 8 \times 2^{30} bytes
```

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in angle brackets (<>). Multiple contiguous bits are indicated by a pair of numbers separated by a colon (:). For example, <9:7,5,2:0> specifies bits 9,8,7,5,2,1, and 0. Similarly, single bits are frequently indicated with angle brackets. For example, <27> specifies bit 27.

Caution

Cautions indicate potential damage to equipment, software, or data.

Data Field Size

The term INT*nn*, where *nn* is one of 2, 4, 8, 16, 32, or 64, refers to a data field of *nn* contiguous NATURALLY ALIGNED bytes. For example, INT4 refers to a NATURALLY ALIGNED longword.

Data Units

The following data-unit terminology is used throughout this manual.

Term	Words	Bytes	Bits	Other
Byte	1/2	1	8	_
Word	1	2	16	_
Longword/Dword	2	4	32	Longword
Quadword	4	8	64	2 Longwords
Octaword	8	16	128	2 Quadwords
Hexword	16	32	256	2 Octawords

Note

Notes emphasize particularly important information.

Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x indicates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A are hexadecimal (also see Addresses). Otherwise, the base is indicated by a subscript; for example, 100_2 is a binary number.

Ranges and Extents

Ranges are specified by a pair of numbers separated by two periods (..) and are inclusive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets (<>) separated by a colon (:) and are inclusive. Bit fields are often specified as extents. For example, bits <7:3> specifies bits 7, 6, 5, 4, and 3.

Register and Memory Figures

Register figures have bit and field position numbering starting at the right (low order) and increasing to the left (high order).

Memory figures have addresses starting at the top and increasing toward the bottom.

Schematic References

Logic schematics are included in the AlphaPC 164UX design package. In this manual, references to schematic pages are printed in *italics*. For example, the following specifies schematic page 26:

"... the ethernet controller (pc164ux.26) provide ..."

Signal Names

All signal names are printed in boldface type. Signal names that originate in an industry-standard specification, such as PCI or IDE, are printed in the case as found in the specification (usually uppercase). Active-low signals have a pound sign "*" appended, or a "not" overscore bar. Signals with no suffix are considered high-asserted signals. For example, signals **pdata<127:0>** is active-high signals. Signals *CPURESET is active-low signals.

UNPREDICTABLE and UNDEFINED

Throughout this manual the terms UNPREDICTABLE and UNDEFINED are used. Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (that is, software running in kernel mode) can trigger UNDEFINED operations. Unprivileged software cannot trigger UNDEFINED operations. However, either privileged or unprivileged software can trigger UNPREDICTABLE results or occurrences.

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the processor. The processor continues to execute instructions in its normal manner. In contrast, UNDEFINED operations can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:

UNPREDICTABLE

- Results or occurrences specified as UNPREDICTABLE might vary from moment to moment, implementation to implementation, and instruction to instruction within implementations. Software can never depend on results specified as UNPREDICTABLE.
- An UNPREDICTABLE result might acquire an arbitrary value that is subject to a few constraints. Such a result might be an arbitrary function of the input operands or of any state information that

is accessible to the process in its current access mode. UNPREDICT-ABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results might also produce exceptions.

An occurrence specified as UNPREDICTABLE may or may not happen based on an arbitrary choice function. The choice function is subject to the same constraints as are UNPREDICTABLE results and must not constitute a security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function of, the contents of memory locations or registers that are inaccessible to the current process in the current access mode.

Also, operations that might produce UNPREDICTABLE results must not write or modify the contents of memory locations or registers to which the current process in the current access mode does not have access. They must also not halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result depended on the value of a register in another process, on the contents of processor temporary registers left behind by some previously running process, or on a sequence of actions of different processes.

UNDEFINED

- Operations specified as UNDEFINED can vary from moment to moment, implementation to implementation, and instruction to instruction within implementations. The operation can vary in effect from nothing, to stopping system operation.
- UNDEFINED operations can halt the processor or cause it to lose information. However, UNDEFINED operations must not cause the processor to hang, that is, reach an unhalted state from which there is no transition to a normal state in which the machine executes instructions. Only privileged software (that is, software running in kernel mode) can trigger UNDEFINED operations.

1

Introduction to the AlphaPC 164UX Motherboard

This chapter provides an overview of AlphaPC 164UX motherboard, including its components, features, and uses. The motherboard is a module for computing systems based on the Digital Semiconductor 21174 core logic chip.

The AlphaPC 164UX provides a single-board hardware and software development platform for the design, integration, and analysis of supporting logic and subsystems. The board also provides a platform for PCI I/O device hardware and software development.

1.1 System Components and Features

The AlphaPC 164UX is implemented in industry-standard parts and uses a Samsung Alpha 21164 microprocessor running at 400,433,466,500,533,600,633,and 667MHz. Figure 1-1 shows the board's functional components.

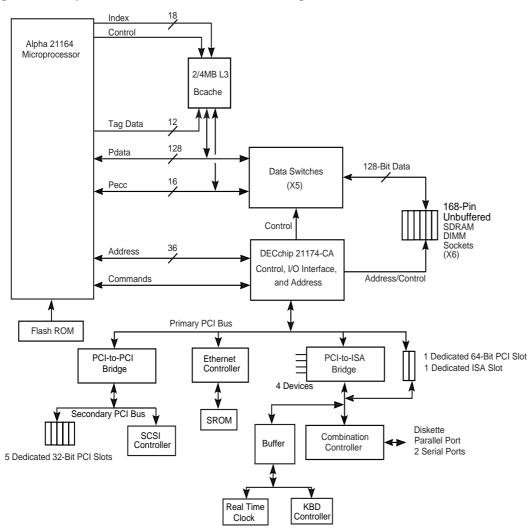


Figure 1–1 AlphaPC 164UX Functional Block Diagram

1.1.1 Digital Semiconductor 21174 Core Logic Chip

The Alpha 21164 microprocessor is supported by the 21174 core logic chip, which provides an interface between three units—memory, the PCI bus, and the 21164. This core logic chip is the interface between the 21164 microprocessor, main memory (addressing and control), and the PCI bus.

Five Data switches provide the memory interface data path.

The 21174 includes the majority of functions necessary to develop a high-performance PC or workstation, requiring minimum discrete logic on the module. It provides flexible and generic functions to allow its use in a wide range of systems.

1.1.2 Memory Subsystem

The synchronous dynamic random-access memory (SDRAM) is contained in three banks of dual inline memory modules (DIMMs). Single- or double-sided DIMMs may be used. Each DIMM is 72 bits wide, with 64 data bits and 8 check bits, with 100 MHz or faster speed. Two DIMMs provide 32Mb to 512MB of memory, while six DIMMs provide up to 1536MB. Table 1–1 lists the DIMM sizes tested

Table 1–1 AlphaPC 164UX SDRAM Memory Configurations (Sheet 1 of 3)

Total	Bar	nk 0	Bai	nk 1	Bank 2	
Memory	U3	U4	U5	U6	U7	U8
32MB	MB 16MB					
64MB	16MB	16MB	16MB	16MB		
	32MB	32MB				
96MB	16MB	16MB	16MB	16MB	16MB	16MB
	32MB	32MB	16MB	16MB		
128MB	32MB	32MB	16MB	16MB	16MB	16MB
	32MB	32MB	32MB	32MB		
	64MB	64MB				
160MB	32MB	32MB	32MB	32MB	16MB	16MB
	64MB	64MB	16MB	16MB		
192MB	32MB	32MB	32MB	32MB	32MB	32MB
	64MB	64MB	16MB	16MB		

Table 1–1 AlphaPC 164UX SDRAM Memory Configurations

(Sheet 2 of 3)

Total	Bar	nk 0	Bar	nk 1	Bank 2		
Memory	U3	U4	U5	U6	U7	U8	
192MB	64MB	64MB	32MB	32MB			
224MB	64MB	64MB	32MB	32MB	16MB	16MB	
256MB	64MB	64MB	32MB	32MB	32MB	32MB	
	64MB	64MB	64MB	64MB			
	128MB	128MB					
288MB	128MB	128MB	16MB	16MB			
320MB	64MB	64MB	64MB	64MB	32MB	32MB	
	128MB	128MB	16MB	16MB	16MB	16MB	
	128MB	128MB	32MB	32MB			
352MB	128MB	128MB	32MB	32MB	16MB	16MB	
384MB	64MB	64MB	64MB	64MB	64MB	64MB	
	128MB	128MB	32MB	32MB	32MB	32MB	
	128MB	128MB	64MB	64MB			
416MB	128MB	128MB	64MB	64MB	16MB	16MB	
448MB	128MB	128MB	64MB	64MB	32MB	32MB	
512MB	128MB	128MB	64MB	64MB	64MB	64MB	
	128MB	128MB	128MB	128MB			
	256MB	256MB					
544MB	128MB	128MB	128MB	128MB	16MB	16MB	
	256MB	256MB	16MB	16MB			
576MB	128MB	128MB	128MB	128MB	32MB	32MB	
	256MB	256MB	16MB	16MB	16MB	16MB	
	256MB	256MB	32MB	32MB			
608MB	256MB	256MB	32MB	32MB	16MB	16MB	
640MB	128MB	128MB	128MB	128MB	64MB	64MB	

Table 1-1 AlphaPC 164UX SDRAM Memory Configurations

(Sheet 3 of 3)

Total	Bar	nk 0	Bar	nk 1	Bank 2		
Memory	U3	U4	U5	U6	U7	U8	
	256MB	256MB	32MB	32MB	32MB	32MB	
	256MB	256MB	64MB	64MB			
672MB	256MB	256MB	64MB	64MB	16MB	16MB	
704MB	256MB	256MB	64MB	64MB	32MB	32MB	
768MB	128MB	128MB	128MB	128MB	128MB	128MB	
	256MB	256MB	64MB	64MB	64MB	64MB	
	256MB	256MB	128MB	128MB			
800MB	256MB	256MB	128MB	128MB	16MB	16MB	
832MB	256MB	256MB	128MB	128MB	32MB	32MB	
896MB	256MB	256MB	128MB	128MB	64MB	64MB	
1024MB	256MB	256MB	128MB	128MB	128MB	128MB	
	256MB	256MB	256MB	256MB			
1056MB	256MB	256MB	256MB	256MB	16MB	16MB	
1088MB	256MB	256MB	256MB	256MB	32MB	32MB	
1152MB	256MB	256MB	256MB	256MB	64MB	64MB	
1280MB	256MB	256MB	256MB	256MB	128MB	128MB	
1536MB	256MB	256MB	256MB	256MB	256MB	256MB	

Note: The following are important items to remember

- in order for the ECC memory feature to work, all DIMMs must be 72bit.
- To populate a bank, you must use 2 matched DIMMs.

1.1.3 L3 Bcache Subsystem Overview

The AlphaPC 164UX board-level L3 backup cache (Bcache) is a 2MB, direct-mapped, synchronous SRAM with a 128-bit data path. The board is capable of handling an L3 cache size of 4MB. See Section 2.3 for more information about the Bcache.

1.1.4 PCI Interface Overview

The AlphaPC 164UX PCI interface is the main I/O bus for the majority of functions (SCSI interface, graphics accelerator, and so on). The PCI interface has a 33-MHz data transfer rate. An onboard PCI-to-ISA bridge is provided through an Intel 82371SB (SIO) chip.An onboard PCI-to-PCI bridge is provided through an DEC 21052 chip.The AlphaPC 164UX includes advanced features, Such as :six PCI slots; on-board Ultra-Wide SCSI; on-board 10/100 Mbs Ethernet.

1.1.5 ISA Interface Overview

The ISA bus provides the following system support functions:

- One expansion slots.
- An SMC FDC37C666 combination controller chip that provides:
 - A diskette controller.
 - Two universal asynchronous receiver-transmitters (UARTs) with full modem control.
 - A bidirectional parallel port.
- A mouse and keyboard controller.
- Real Time Clock.

1.1.6 Miscellaneous Logic

The AlphaPC 164UX contains the following miscellaneous components:

- Synthesizer for clocks:
 - A clock synthesizer (TQ2061) provides a programmable clock source from 300MHz to 800MHz to the 21164 microprocessor. The microprocessor supplies a clock to the system PLL/clock buffer for the 21174.
 - The 21174 core logic chip provides the SDRAM and PCI clocks.
 - 24MHz clock generator provide a clock source for the FDC37C666 ISA device controller. The controller's onchip generator then provides other clocks as needed.
- AMD PALLV22V1015 and PALCE16V8H programmable logic devices (PLDs) for PCI bus arbitration.
- Altera EPM7032-7 for DMA boundary issue.

• AMD PALLV22V1015JC for clock controller.

1.2 Software Support

The support elements described in this section are either included with the AlphaPC 164UX or are available separately.

1.2.1 ARCSBIOS Windows NT Firmware

The AlphaPC 164UX motherboard ships with ARCSBIOS firmware and online documentation that describes how to configure the firmware for Windows NT. This firmware initializes the system and enables you to install and boot the Windows NT operating system. The ARCSBIOS firmware resides in the flash ROM on the AlphaPC 164UX motherboard. Binary images of the ARCSBIOS firmware are included in the Firmware update diskette, along with a license describing the terms for use and distribution.

1.3 Hardware Design Support

The full design database, including schematics and source files, is supplied. User documentation is also included. The database allows designers with no previous Alpha architecture experience to successfully develop a working Alpha system with minimal assistance.

System Configuration and Connectors

This chapter describes the AlphaPC 164UX configuration, board connectors and functions, and jumper functions. It also identifies jumper and connector locations.

The AlphaPC 164UX uses jumpers to implement configuration parameters such as system speed and boot parameters. These jumpers must be configured for the user's environment. Onboard connectors are provided for the I/O interfaces, DIMMs, and serial and parallel peripheral ports.

Figure 2–1 shows the board outlines and identifies the location of jumpers, connectors, and major components. Table 2–1 lists and defines these items.

J10 Blk Yellow Red wire wire wire J16 FOK J15 J28 J30 J36 J35 Pwr LED Pwr Switch IDE LED Reset Switch SCSI LED U7 U6 U5 U4 U3

Figure 2–1 AlphaPC 164UX Jumper/Connector Location

AlphaPC 164UX Jumper Configuration

Table 2-1 AlphaPC 164UX Jumper/Connector List

Item		Item	
No.	Description	No.	Description
J2	Full length 64 bit PCI slot	U3	DIMM socket 0
J5	Half length 32 bit PCI slot	U4	DIMM socket 1
J6	Full length 32 bit PCI slot	U5	DIMM socket 2
J7	Full length 32 bit PCI slot	U6	DIMM socket 3
J10	Full length ISA slot	U7	DIMM socket 4
J12	Serial Port connector	U8	DIMM socket 5
J13	Parallel port connector	U55	Microprocessor socket(21164 Alpha)
J15	Ultra Fast and Wide SCSI Connector		
J16	Narrow SCSI connector		
J17	SCSI LED connector		
J18	Power connector		
J21	Full length 32 bit PCI slot		
J22	Full length 32 bit PCI slot		
J23	Speaker connector		
J24	IDE drive connector		
J25	Keyboard/Mouse connector		
J28	Configuration jumpers		
J29	IDE LED connector		
J30	2 pin Power LED connector		
J31	5 pin Power LED connector		
J33	Floppy drive connector		
J34	10/100 Mbit ethernet connector		
J35	Microprocessor fan/fan sense connector		
J36	Power switch connector		
J37	Reset switch connector		

2.1 AlphaPC 164UX Jumper Configuration

The AlphaPC 164UX has one set of jumpers located at J28. These jumpers set the hardware configuration and boot options. Figure 2–1 shows the jumper location on the AlphaPC 164UX motherboard. Figure 2–2 shows the jumper functions for each group.

Figure 2–2 AlphaPC 164UX Configuration Jumpers

J28 System Configuration Jumpers

				•				
Option 1	9	0)	F	Ontion 1	Ontion?	Option3	Ontion/
Option 2	P	Ó		Frequency				
	_		>	300 MHz 333 MHz	In Out	In In	In In	In In
Option 3		Ŷ		366 MHz	In	Out	In	În
Ontion 1				400 MHz	Out	Out	In	In
Option 4	P	0		433 MHz	In	In	Out	In
Option 5		0		466 MHz	Out	In	Out	In
Option 3		U		500 MHz 533 MHz	In Out	Out Out	Out Out	In In
Option 6	0	0		566 MHz	In	In	In	Out
Option 0	_	O		600 MHz	Out	În	In	Out
Option 7	0	0		633 MHz	In	Out	In	Out
Option /	~	0		666 MHz	Out	Out	In	Out
Option 8	0	0		700 MHz	In	In	Out	Out
Option 6	~	0		733 MHz	Out	In	Out	Out
Option 9	0	0		766 MHz	In	Out	Out	Out
Option		•		800 MHz	Out	Out	Out	Out
Option 10	0	0		Ontion 5 . Daw	.:. D C	d C -1	4/Dafa14	0()
•				Option 5 : Pyx			ı(Deraun	Out)
Option 11	0	0		Option 6 : Res			Mada(Da	fault Out)
1				Option 7 : Ena Option 8 : Ena	ble SKO	vi Debug.	Mode(De	Defendt Out)
Option 12	0	0		Option 9 : Ena				
-				Option 10 : Re				aun Out)
Option 13	P	Q		Option 11 : Bo				(Default Out)
				Option 12 : Re				(Derault Out)
Option 14		0		Option 13 : M		crauri Oui	L	
L		_		Option 13. W	ust be in			
Option 15		Q		Bcache Size	Option	14 Option	n15	
0 11		_		0MB	In	Out		
Option 16	lacksquare	0		1MB	In	In	•	
				2MB	Out	Out	-	
				4MB	Out	In	•	
				71111	Out	111		

In Option 16 : FAN OK Signal Do not ever populate(Default Out)

2.2 CPU Speed Selection (Option 1,2,3, &4)

The clock synthesizer makes it possible to change the frequency of the microprocessor's clock input without having to change the clock crystal. Simply set the speed jumpers to adjust the frequency of the microprocessor's clock. These speed jumpers are located at J28-1/2 (Option 1), J28-3/4 (Option 2), J28-5/6 (Option 3), and J28-7/8 (Option 4). These four jumpers set speed at power-up as listed in Figure 2–2.

2.3 Bcache Size Jumpers (Option 14,15)

The Bcache size jumpers are located at J28–27/28 (Option14) and J28–29/30 (Option15), as shown in Figure 2–2. The AlphaPC 164UX-2/-4 is configured with 2MB/4MB of Bcache during production; the other jumpers shown in Figure 2–2 (0,1) are for other implementations.

Note: The standard motherboard is manufactured with 128K X 18 or 256K X 18 data SSRAMs.

2.4 Boot Option Jumper (Option 11)

The boot option jumper is located at J28-21/22 (Option 11). The default position for this jumper is out (Figure 2–2). This jumper selects the image to be loaded into memory from the system flash ROM. With the jumper out the ARCSBIOS firmware is loaded. With the jumper in, the Safe ARCSBIOS is loaded.

2.5 AlphaPC 164UX Connector Pinouts

This section lists the pinouts of all AlphaPC 164UX connectors. See Figure 2–1 for connector locations.

2.5.1 PCI Bus Connector Pinouts

Table 2–2 shows the PCI bus connector pinouts.

Table 2-2 PCI Bus Connector Pinouts

(Sheet 1 of 3)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal			
32-Bit and 64-Bit PCI Connectors (J2, J5, J6, J7, J21, J22)										
A1	TRST#	A2	+12V	A3	TMS	A4	TDI			
A5	Vdd	A6	INTA	A7	INTC	A8	Vdd			

Table 2-2 PCI Bus Connector Pinouts

(Sheet 2 of 3)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A9		A10	Vdd	A11	_	A12	Gnd
A13	Gnd	A14	_	A15	RST#	A16	Vdd
A17	GNT#	A18	Gnd	A19	_	A20	AD<30>
A21	+3V	A22	AD<28>	A23	AD<26>	A24	Gnd
A25	AD<24>	A26	IDSEL	A27	+3V	A28	AD<22>
A29	AD<20>	A30	Gnd	A31	AD<18>	A32	AD<16>
A33	+3V	A34	FRAME#	A35	Gnd	A36	TRDY#
A37	STOP#	A38	STOP#	A39	+3V	A40	SDONE
A41	SBO#	A42	Gnd	A43	PAR	A44	AD<15>
A45	+3V	A46	AD<13>	A47	AD<11>	A48	Gnd
A49	AD<09>	A50	Not used	A51	Not used	A52	C/BE#<0>
A53	+3V	A54	AD<06>	A55	AD<04>	A56	Gnd
A57	AD<02>	A58	AD<00>	A59	Vdd	A60	REQ64#
A61	Vdd	A62	Vdd	B1	-12V	B2	TCK
B3	Gnd	B4	TDO	B5	Vdd	B6	Vdd
B7	INTB	B8	INTD	B9	PRSNT1#	B10	_
B11	PRSNT2#	B12	Gnd	B13	Gnd	B14	_
B15	Gnd	B16	CLK	B17	Gnd	B18	REQ#
B19	Vdd	B20	AD<31>	B21	AD<29>	B22	Gnd
B23	AD<27>	B24	AD<25>	B25	+3V	B26	C/BE#<3>
B27	AD<23>	B28	Gnd	B29	AD<21>	B30	AD<19>
B31	+3V	B32	AD<17>	B33	C/BE#<2>	B34	Gnd
B35	IRDY#	B36	+3V	B37	DEVSEL#	B38	Gnd
B39	LOCK#	B40	PERR#	B41	+3V	B42	SERR#
B43	+3V	B44	C/BE#<1>	B45	AD<14>	B46	Gnd
B47	AD<12>	B48	AD<10>	B49	Gnd	B50	Not used
B51	Not used	B52	AD<08>	B53	AD<07>	B54	+3V
B55	AD<05>	B56	AD<03>	B57	Gnd	B58	AD<01>
B59	Vdd	B60	ACK64#	B61	Vdd	B62	Vdd
64-Bit	PCI Connector	rs Only ((J2)				
A63	Gnd	A64	C/BE#<7>	A65	C/BE#<5>	A66	Vdd
A67	PAR64	A68	D<62>	A69	Gnd	A70	D<60>
A71	D<58>	A72	Gnd	A73	D<56>	A74	D<54>
A75	Vdd	A76	D<52>	A77	D<50>	A78	Gnd
A79	D<48>	A80	D<46>	A81	Gnd	A82	D<44>

Table 2-2 PCI Bus Connector Pinouts

(Sheet 3 of 3)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A83	D<42>	A84	Vdd	A85	D<40>	A86	D<38>
A87	Gnd	A88	D<36>	A89	D<34>	A90	Gnd
A91	D<32>	A92	_	A93	Gnd	A94	_
B63	_	B64	Gnd	B65	C/BE#<6>	B66	C/BE#<4>
B67	Gnd	B68	D<63>	B69	D<61>	B70	Vdd
B71	D<59>	B72	D<57>	B73	Gnd	B74	D<55>
B75	D<53>	B76	Gnd	B77	D<51>	B78	D<49>
B79	Vdd	B80	D<47>	B81	D<45>	B82	Gnd
B83	D<43>	B84	D<41>	B85	Gnd	B86	D<39>
B87	D<37>	B88	Vdd	B89	D<35>	B90	D<33>
B91	Gnd	B92	_	B93	_	B94	Gnd

2.5.2 ISA Expansion Bus Connector Pinouts

Table 2–3 shows the ISA expansion bus connector pinouts.

Table 2-3 ISA Expansion Bus Connector Pinouts (J10)

	. ,										
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal				
1	Gnd	2	IOCHCK#	3	RSTDRV	4	SD7				
5	Vdd	6	SD6	7	IRQ9	8	SD5				
9	-5V	10	SD4	11	DRQ2	12	SD3				
13	-12V	14	SD2	15	ZEROWS#	16	SD1				
17	+12V	18	SD0	19	Gnd	20	IOCHRDY				
21	SMEMW#	22	AEN	23	SMEMR#	24	SA19				
25	IOW#	26	SA18	27	IOR#	28	SA17				
29	DACK3#	30	SA16	31	DRQ3	32	SA15				
33	DACK1#	34	SA14	35	DRQ1	36	SA13				
37	REFRESH#	38	SA12	39	SYSCLK	40	SA11				
41	IRQ7	42	SA10	43	IRQ6	44	SA9				
45	IRQ5	46	SA8	47	IRQ4	48	SA7				
49	IRQ3	50	SA6	51	DACK2#	52	SA5				
53	TC	54	SA4	55	BALE	56	SA3				
57	Vdd	58	SA2	59	OSC	60	SA1				
61	Gnd	62	SA0	63	MEMCS16#	64	SBHE#				
65	IOCS16#	66	LA23	67	IRQ10	68	LA22				
69	IRQ11	70	LA21	71	IRQ12	72	LA20				
73	IRQ15	74	LA19	75	IRQ14	76	LA18				
77	DACK0#	78	LA17	79	DRQ0	80	MEMR#				
81	DACK5#	82	MEMW#	83	DRQ5	84	SD8				
85	DACK6#	86	SD9	87	DRQ6	88	SD10				
89	DACK7#	90	SD11	91	DRQ7	92	SD12				
93	Vdd	94	SD13	95	MASTER#	96	SD14				
97	Gnd	98	SD15	_	_	_	_				

2.5.3 SDRAM DIMM Connector Pinouts

Table 2–4 shows the SDRAM DIMM connector pinouts.

Table 2-4 SDRAM DIMM Connector Pinouts (U3 through U8)¹

(Sheet 1 of 2)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	Gnd	2	DQ0	3	DQ1	4	DQ2
5	DQ3	6	3.3V	7	DQ4	8	DQ5
9	DQ6	10	DQ7	11	DQ8	12	Gnd
13	DQ9	14	DQ10	15	DQ11	16	DQ12
17	DQ13	18	3.3V	19	DQ14	20	DQ15
21	CB0	22	CB1	23	Gnd	24	NC
25	NC	26	3.3V	27	$\overline{ ext{WE}}$	28	DQMB0
29	DQMB1	30	<u>50</u>	31	NC	32	Gnd
33	$\mathbf{A0}$	34	A2	35	A4	36	A6
37	A8	38	A10	39	A12	40	3.3V
41	3.3V	42	CK0	43	Gnd	44	NC
45	$\overline{S2}$	46	DQMB2	47	DQMB3	48	NC
49	3.3V	50	NC	51	NC	52	CB2
53	CB3	54	Gnd	55	DQ16	56	DQ17
57	DQ18	58	DQ19	59	3.3V	60	DQ20
61	NC	62	NC	63	CKE1	64	Gnd
65	DQ21	66	DQ22	67	DQ23	68	Gnd
69	DQ24	70	DQ25	71	DQ26	72	DQ27
73	3.3V	74	DQ28	75	DQ29	76	DQ30
77	DQ31	78	Gnd	79	CK2	80	NC
81	NC	82	SDA	83	SCL	84	3.3V
85	Gnd	86	DQ32	87	DQ33	88	DQ34
89	DQ35	90	3.3V	91	DQ36	92	DQ37
93	DQ38	94	DQ39	95	DQ40	96	Gnd
97	DQ41	98	DQ42	99	DQ43	100	DQ44
101	DQ45	102	3.3V	103	DQ46	104	DQ47
105	CB4	106	CB5	107	Gnd	108	NC
109	NC	110	3.3V	111	$\overline{\mathbf{CAS}}$	112	DQMB4
113	DQMB5	114	S1	115	$\overline{\mathbf{RAS}}$	116	Gnd
117	A1	118	A3	119	A5	120	A7
121	A9	122	BA0	123	A13	124	3.3V

Table 2-4 SDRAM DIMM Connector Pinouts (U3 through U8)¹

(Sheet 2 of 2)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
125	CK1	126	BA1 ²	127	Gnd	128	CKE0
129	S3	130	DQMB6	131	DQMB7	132	PD^3
133	3.3V	134	NC	135	NC	136	CB6
137	CB7	138	Gnd	139	DQ48	140	DQ49
141	DQ50	142	DQ51	143	3.3V	144	DQ52
145	NC	146	NC	147	PD	148	Gnd
149	DQ53	150	DQ54	151	DQ55	152	Gnd
153	DQ56	154	DQ57	155	DQ58	156	DQ59
157	3.3V	158	DQ60	159	DQ61	160	DQ62
161	DQ63	162	Gnd	163	CK3	164	NC
165	SA0	166	SA1	167	SA2	168	3.3V

³ Pull-down.

2.5.4 EIDE Drive Bus Connector Pinouts

Table 2–5 shows the EIDE drive bus connector pinouts.

Table 2-5 EIDE Drive Bus Connector Pinouts (J24)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	RESET	2	Gnd	3	IDE_D7	4	IDE_D8
5	IDE_D6	6	IDE_D9	7	IDE_D5	8	IDE_D10
9	IDE_D4	10	IDE_D11	11	IDE_D3	12	IDE_D12
13	IDE_D2	14	IDE_D13	15	IDE_D1	16	IDE_D14
17	IDE_D0	18	IDE_D15	19	Gnd	20	NC (key pin)
21	MARQ	22	Gnd	23	IOW	24	Gnd
25	IOR	26	Gnd	27	CHRDY	28	BALE
29	MACK	30	Gnd	31	IRQ	32	IOCS16
33	ADDR1	34	NC	35	ADDR0	36	ADDR2
37	CS0	38	CS1	39	ACT	40	Gnd

 $^{^1}$ Pins 1 through 84 are on the front side and pins 85 through 168 are on the back side. 2 The AlphaPC 164UX uses **BA1** as both **BA1** and **ADDR12**. Therefore, four-bank DIMMs using ADDR<11:0> are the maximum size. (Two-bank DIMMs can use ADDR<12:0>.)

2.5.5 Diskette Drive Bus Connector Pinouts

Table 2–6 shows the diskette (floppy) drive bus connector pinouts.

Table 2–6 Diskette (Floppy) Drive Bus Connector Pinouts (J33)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	Gnd	2	DEN0	3	Gnd	4	NC
5	Gnd	6	DEN1	7	Gnd	8	INDEX
9	Gnd	10	MTR0	11	Gnd	12	DR1
13	Gnd	14	DR0	15	Gnd	16	MTR1
17	Gnd	18	DIR	19	Gnd	20	STEP
21	Gnd	22	WDATA	23	Gnd	24	WGATE
25	Gnd	26	TRK0	27	Gnd	28	WRTPRT
29	ID0	30	RDATA	31	Gnd	32	HDSEL
33	ID1	34	DSKCHG		_	_	_

2.5.6 Parallel Bus Connector Pinouts

Table 2–7 shows the parallel bus connector pinouts.

Table 2-7 Parallel Bus Connector Pinouts (J13)

				•	•			
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	
1	STB	2	PD0	3	PD1	4	PD2	
5	PD3	6	PD4	7	PD5	8	PD6	
9	PD7	10	ACK	11	BUSY	12	PE	
13	SLCT	14	AFD	15	ERR	16	INIT	
17	SLIN	18	Gnd	19	Gnd	20	Gnd	
21	Gnd	22	Gnd	23	Gnd	24	Gnd	
25	Gnd	_	_	_	_	_		

2.5.7 COM1/COM2 Serial Line Connector Pinouts

Table 2–8 shows the COM1/COM2 serial line connector pinouts.

Table 2–8 COM1/COM2 Serial Line Connector Pinouts (J12)

COM1 Pin		COM2 Pin		
(Top)	COM1 Signal	(Bottom)	COM2 Signal	
1	DCD1	1	DCD2	
2	RxD1	2	RxD2	
3	TxD1	3	TxD2	
4	DTR1	4	DTR2	
5	SG1	5	SG2	
6	DSR1	6	DSR2	
7	RTS1	7	RTS2	
8	CTS1	8	CTS2	
9	RI1	9	RI2	

2.5.8 Keyboard/Mouse Connector Pinouts

Table 2–9 shows the keyboard/mouse connector pinouts.

Table 2–9 Keyboard/Mouse Connector Pinouts (J25)

Keyboard Pi	in Keyboard Signal	Mouse P (Top)	in Mouse Signal
1	KBDATA	1	MSDATA
2	NC	2	NC
3	Gnd	3	Gnd
4	Vdd	4	Vdd
5	KBCLK	5	MSCLK
6	NC	6	NC

2.5.9 Input Power Connector Pinouts

Table 2–10 shows the input power connector pinouts.

Table 2-10 Input Power Connector Pinouts (J18)¹

Pin	Voltage	Pin	Voltage	Pin	Voltage	Pin	Voltage
1	+3.3 V dc	2	+3.3 V dc	3	Gnd	4	+5 V dc
5	Gnd	6	+5 V dc	7	Gnd	8	P_DCOK
9	5 V SB	10	+12 V dc	11	+3.3 V dc	12	−12 V dc
13	Gnd	14	PS_ON	15	Gnd	16	Gnd
17	Gnd	18	−5 V dc	19	+5 V dc	20	+5 V dc

¹ This pinout is ATX-compliant.

2.5.10 Narrow SCSI Bus Connector

Table 2-11 shows the narrow SCSI bus connector pinouts

Table 2-11 Narrow SCSI Bus Connector (J16)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	GND	2	$\overline{\mathrm{SD0}}$	3	GND	4	SD1
5	GND	6	$\overline{\text{SD2}}$	7	GND	8	$\overline{\text{SD3}}$
9	GND	10	SD4	11	GND	12	SD5
13	GND	14	$\overline{\mathrm{SD6}}$	15	GND	16	$\overline{\text{SD7}}$
17	GND	18	SDPO	19	GND	20	GND
21	GND	22	BUS_PRES	23	GND	24	GND
25	NC	26	TERMPWR	27	GND	28	GND
29	GND	30	GND	31	GND	32	SATN
33	GND	34	GND	35	GND	36	SBSY
37	GND	38	SACK	39	GND	40	SRST
41	GND	42	SMSG	43	GND	44	SSEL
45	GND	46	$\overline{\text{SCD}}$	47	GND	48	SREQ
49	GND	50	SIO				

2.5.11 Fast and Wide SCSI Bus Connector

Table 2–12 shows the Fast and Wide SCSI bus connector pinouts

Table 2-12 Fast and Wide SCSI Connector Pinouts (J15)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	GND	2	GND	3	GND	4	GND
5	GND	6	GND	7	GND	8	GND
9	GND	10	GND	11	GND	12	GND
13	GND	14	GND	15	GND	16	GND
17	TERMPWR1	18	TERMPWR1	19	NC	20	GND
21	GND	22	GND	23	GND	24	GND
25	GND	26	GND	27	GND	28	GND
29	GND	30	GND	31	GND	32	GND
33	GND	34	GND	35	SD12	36	SD13
37	SD14	38	<u>SD15</u>	39	SDP1	40	$\overline{\mathrm{SD0}}$
41	SD1	42	$\overline{\text{SD2}}$	43	SD3	44	SD4
45	$\overline{\text{SD5}}$	46	$\overline{\mathrm{SD6}}$	47	$\overline{\mathrm{SD7}}$	48	$\overline{\text{SDP0}}$
49	GND	50	BUS_PRES	51	TERMPWR1	52	TERMPWR1
53	NC	54	GND	55	SATN	56	GND
57	SBSY	58	SACK	59	SRST	60	SMSG
61	SSEL	62	$\overline{\text{SCD}}$	63	SREQ	64	SIO
65	$\overline{\text{SD8}}$	66	SD9	67	SD10	68	SD11
69	GND	70	GND				

2.5.12 10/100 Mbit Ethernet Connector Pinouts

Table 2–13 shows the Fast and Wide SCSI bus connector pinouts.

Table 2-13 10/100 Mbit Ethernet Connector Pinouts (34)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	TD_P	2	TD_M	3	RD_P	4	U1
5	U2	6	RD_M	7	U3	8	U4
9	MP1	10	MP2				

2.5.13 Speaker Connector Pinouts

Table 2–14 shows the speaker connector pinouts.

Table 2–14 Speaker Connector Pinouts (J23)

Pin	Signal	Name
1	SPKR	Speaker output
2	NC	_
3	VDD	_
4	GND	_

2.5.14 Microprocessor Fan Power Connector Pinouts

Table 2–15 shows the microprocessor fan power connector pinouts.

Table 2–15 Microprocessor Fan Power Connector Pinouts (J35)

Pin	Signal	Name
1	+12V	_
2	FAN_OK_L	Fan connected
3	GND	_

2.5.15 Pin Power LED Connector Pinouts

Table 2–16 shows the power LED connector pinouts.

Table 2–16 Power LED Connector Pinouts (J31)

Pin	Signal	Name
1	Powerpullup	Power pullup
2	NC	_
3	GND	_
4	NC	_
5	NC	_

AlphaPC 164UX Connector Pinouts

2.5.16 IDE Drive LED Connector Pinouts

Table 2–17 shows the IDE drive LED connector pinouts.

Table 2-17 IDE Drive LED Connector Pinouts (J29)

Pin	Signal	Name
1	ACTIVITY	Hard drive active
2	ACTIVUTYPULLUP	

2.5.17 Reset Switch Connector Pinouts

Table 2–18 shows the reset switch connector pinouts.

Table 2–18 Reset Switch Connector Pinouts (J37)

Pin	Signal	Name
1	GND	_
2	RSTSWITCH	Reset system

2.5.18 Soft Power Switch Connector Pinouts

Table 2–19 shows the soft power switch connector pinouts.

Table 2-19 Soft Power Switch Connector Pinouts (J36)

Pin	Signal	Name
1	GND	_
2	PWRSWITCH	System power on/off

2.5.19 SCSI LED Connector Pinouts

Table 2–20 shows the SCSI LED connector pinouts.

Table 2-20 SCSI LED Connector Pinouts (J17)

Pin	Signal	Name
1	SCSI_BUSY	_
2	SCSI_BSY2	_

Functional Description

This chapter describes the functional operation of the AlphaPC 164UX. The description introduces the Digital Semiconductor 21174 core logic chip and describes its implementation with the 21164 microprocessor, its supporting memory, and I/O devices. Figure 1–1 shows the AlphaPC 164UX major functional components.

Bus timing and protocol information found in other data sheets and reference documentation is not duplicated. See Appendix C for a list of supporting documents and order numbers.

Note:

For detailed descriptions of bus transactions, chip logic, and operation, refer to the 21164 Alpha Microprocessor Hardware Reference Manual and the Digital Semiconductor 21174 Core Logic Chip Technical Reference Manual. For details of the PCI interface, refer to the PCI System Design Guide.

3.1 AlphaPC 164UX Bcache Interface

The 21164 microprocessor controls the board-level L3 backup cache (Bcache) array (see Figure 3–1). The data bus (**pdata<127:0>**), check bus (**pecc<15:0>**), **p_tag_dirty** and **p_tag_ctl_par** signals are shared with the system interface.

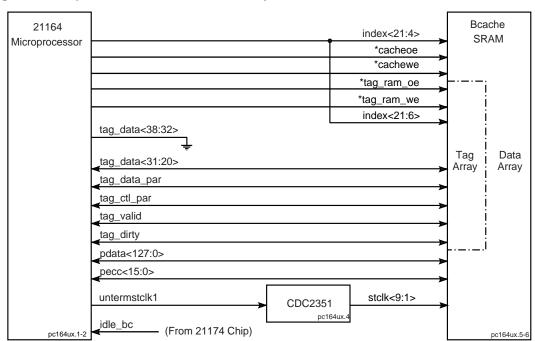
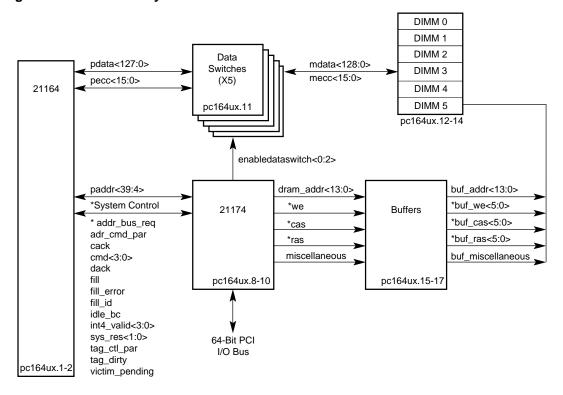


Figure 3-1 AlphaPC 164UX L3 Bcache Array

The Bcache is a 2MB or 4MB, direct-mapped, synchronous SRAM (SSRAM) with a 128-bit data path. It is populated with a quantity of eight 128K x 18 or 256K x 18 SSRAMs for data store, and one 64K x 18 SSRAM for the tag store. In most cases, wave-pipelined accesses can decrease the cache loop times by one CPU cycle. The Bcache supports 64-byte transfers to and from memory.


3.2 Digital Semiconductor 21174 Core Logic Chip

The 21174 core logic chip provides a cost-competitive solution for designers using the 21164 microprocessor to develop uniprocessor systems. The chip provides a 128-bit memory interface and a PCI I/O interface, and includes the Digital Semiconductor 21174-CA chip packaged in a 474-pin plastic ball grid array (PBGA).

Figure 3–2 shows the AlphaPC 164UX implementation of the 21174 core logic chip.

Figure 3-2 Main Memory Interface

3.2.1 21174 Chip Overview

The 21174 application-specific integrated circuit (ASIC) accepts addresses and commands from the 21164 microprocessor and drives the main memory array with the address, control, and clock signals. It also provides an interface to the 64-bit PCI I/O bus.

The 21174 chip provides the following functions:

- Serves as the interface between the 21164 microprocessor, main memory (addressing and control), and the PCI bus. A three-entry CPU instruction queue is implemented to capture commands should the memory or I/O port be busy.
- Provides control to the Data Switch chips to isolate the L3 cache from the main memory bus during private reads and writes.

- Generates the clocks, row, and column addresses for the SDRAM DIMMs, as well as all of the memory control signals (*RAS,*CAS, *WE). All of the required SDRAM refresh control is contained in the 21174.
- Provides all the logic to map 21164 noncacheable addresses to PCI address space, as well as all the translation logic to map PCI DMA addresses to system memory.

Two DMA conversion methods are supported:

- Direct mapping, in which a base offset is concatenated with the PCI address.
- Scatter-gather mapping, which maps an 8KB PCI page to any 8KB memory page. The 21174 contains an eight-entry scatter-gather translation lookaside buffer (TLB), where each entry holds four consecutive page table entries (PTEs).

Refer to Appendix A for additional details on PCI and DMA address mapping.

3.2.2 Main Memory Interface

Five Data Switches provide the interface between the 21164/L3 cache (**pdata<127:0**>, **pecc<15:0**>) and the memory/21174 (**mdata<127:>**, **mecc<15:0>**). The AlphaPC 164UX supports six168-pin unbuffered 72-bit SDRAM DIMM modules. Quadword ECC is supported on the SDRAM and CPU buses. Even parity is generated on the PCI bus.

The AlphaPC 164UX supports a maximum of 1536MB of main memory. The memory is organized as three banks. Table 1–1 lists total memory options along with the corresponding DIMM sizes required. All CPU cacheable memory accesses and PCI DMA accesses are controlled and routed to main memory by the 21174 core logic chip.

The AlphaPC 164UX implements the alternate memory mode for SDRAM RAS and CAS control signals. Alternate memory mode is explained in the *Digital Semiconductor 21174 Core Logic Chip Technical Reference Manual*.

3.2.3 PCI Devices

The AlphaPC 164UX uses the PCI bus as the main I/O bus for the majority of peripheral functions. As Figure 3–3 shows, the board implements the ISA bus as an expansion bus for system support functions and for relatively slow peripheral devices.

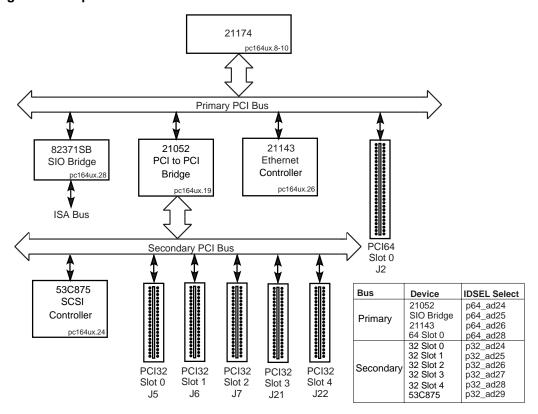


Figure 3-3 AlphaPC 164UX PCI Bus Devices

The PCI bus supports multiplexed, burst mode, read and write transfers. It supports synchronous operation of 33 MHz. It also supports either a 32-bit or 64-bit data path with 32-bit device support in the 64-bit configuration. Depending upon the configuration and operating frequencies, the PCI bus supports up to 264-MB/s (33 MHz, 64-bit) peak throughput. The PCI provides parity on address and data cycles. Three physical address spaces are supported:

- 32-bit memory space
- 32-bit I/O space
- 256-byte-per-agent configuration space

The bridge from the 21164 system bus to the 64-bit PCI bus is provided by the 21174 chip. It generates the required 32-bit PCI address for 21164 I/O accesses directed to the PCI. It also accepts 64-bit double address cycles and 32-bit single address cycles. However, the 64-bit address support is subject to some constraints. Refer to Appendix A for more information on 64-bit addressing constraints.

3.2.4 System-IO (SIO) Chip

The 82371SB SIO chip provides the bridge between the PCI bus and the ISA bus. The SIO incorporates the logic for the following:

- PCI and ISA Master/Slave interface
- Fast IDE interface
- Plug-n-Play Port for Motherboard Devices
- Enhanced 7-channel DMA controller that supports fast DMA transfers
- PCI Specification Revision 2.1 Compliant
- Functionality of One 82c54 Timer
- Two 82c59 Interrupt Controller Functions
- X-Bus Peripheral Support
- I/O Advanced Programmable Interrupt Controller(IOAPIC) Support
- Nonmaskable interrupt (NMI) control logic
- Universal Serial Bus(USB) Host Controller
- System Power Management

Refer to Intel document 82420/82430 PCIset ISA and EISA Bridges for additional information.

3.2.5 Ethernet LAN Controller Chip

The 21143 is an Ethernet LAN controller for both 100-Mb/s and 10-Mb/s data rates, which provides a direct interface to the peripheral component interconnect (PCI) local bus or the CardBus.

- Power-Management and Power-Savings Features
- Automatic Detection/Sensing Features

- Supports PCI and CardBus interfaces
- Supports an unlimited PCI burst
- Supports PCI clock speed frequency from dc to 33 MHz; network operation with PCI clock from 20 MHz to 33 MHz
- Supports automatic loading of subvendor ID and CardBus card information structure (CIS) pointer from serial ROM to configuration registers
- Supports full-duplex operation on both MII/SYM and 10BASE-T ports
- Provides MicroWire interface for serial ROM (1K and 4K EEPROM)
- Supports three network ports: 10BASE-T (10 Mb/s), AUI (10 Mb/s), and MII/ SYM (10/100 Mb/s)
- Supports IEEE 802.3 and ANSI 8802-3 Ethernet standards

For more information about the 21143, refer to the Digital Semiconductor 21143 PCI/CardBus 10/100-Mb/s Ethernet LAN Controller Data Sheet and the Digital Semiconductor 21143 PCI/CardBus 10/100-Mb/s Ethernet LAN Controller Hardware Reference Manual.

3.2.6 PCI- Ultra SCSI (Fast-20) I/O Processor Chip

- Performs wide high-speed SCSI bus transfers in single-ended and differential mode up to 40 MB/s synchronous Ultra SCSI (Fast-20) transfers and 14 MB/s asynchronous transfers
- **SCRIPTS Instruction Prefetch**
- 536-byte buffer allows burst length of up to 128 transfers
- Load and Store instruction
- 4 KB static RAM for SCRIPTS instruction storage
- 32 additional Scratchpad registers for user-defined functions
- Designed to provide a smooth migration path from existing Fast SCSI designs
- Builds upon proven SCSI technologya pin-for-pin replacement for the wide SCSI industry standard SYM53C825 and SYM53C825A
- Provides new features for enhanced PCI performance and flexibility

ISA Bus Devices


3.2.7 PCI Expansion Slots

Six dedicated PCI expansion slots are provided on the AlphaPC 164UX. This allows the system user to add additional 32-bit or 64-bit PCI options. While both the 32-bit and the 64-bit slots use the standard 5-V PCI connector and pinout, +3.3 V is supplied for those boards that require it. The SIO chip provides the interface to the ISA expansion I/O bus.

3.3 ISA Bus Devices

Figure 3–4 shows the AlphaPC 164UX ISA bus implementation with peripheral devices and connectors. One dedicated ISA expansion slots are provided. System support features such as serial lines, parallel port, and diskette controller are embedded on the module by means of an FDC37C666 combination controller chip.

Figure 3-4 AlphaPC 164UX ISA Bus Devices

3.3.1 Combination Controller

The AlphaPC 164UX uses the Standard Microsystems Corporation FDC37C666 Super I/O combination controller chip (see Figure 3–4). It is packaged in a 100-pin QFP configuration. The chip provides the following ISA peripheral functions:

- **Diskette controller**—Software compatible to the Intel N82077 FDC. Integrates the functions of the formatter/controller, digital data separator, write precompensation, and data-rate selection logic requiring no external filter components. Supports the 2.88MB drive format and other standard diskette drives used with 5.25-inch and 3.5-inch media. FDC data and control lines are brought out to a standard 34-pin connector (J33). A ribbon cable interfaces the connector to one or two diskette drives.
- **Serial ports**—Two UARTs with full modem control, compatible with NS16450 or PC16550 devices, are brought out to two separate onboard, 9-pin D-subminiature connectors (J12).
- **Parallel port**—The bidirectional parallel port is brought out to an onboard 25-pin connector (J13). It can be brought out through a 25-pin female D-subminiature connector on the bulkhead of a standard PC enclosure.

Flash ROM Address Map

3.3.2 XD Bus Device

The AlphaPC 164UX XD bus drives a NVRAM,RTC, and KBDC devices.

3.3.3 ISA Expansion Slots

One ISA expansion slot is provided for plug-in ISA peripheral (J10).

3.3.4 ISA I/O Address Map

Table 3–1 lists the AlphaPC 164UX ISA I/O space address mapping.

Table 3-1 ISA I/O Address Map

Range (hex)	Usage
060-060	i8042 PRT
064-064	i8042 PRT
1F0-1F7	ATAPI
2F8-2FE	Serial port—COM2
378-37B	Parallel Port—LPT2
3F0-3F5	Floppy
3F6-3F6	ATAPI
3F7-3F7	Floppy
3F8-3FE	Serial port—COM1

3.4 Flash ROM Address Map

The flash ROM is mapped to three regions of memory. Access to the first two regions is RO. The first two regions provide the software necessary to initialize the system and transfer execution to the next level of software. When power is turned on, address ranges 0 to 00.00FF.FFFF and 0F.FC00.0000 to 0F.FFFF.FFFF are enabled. After the system has been initialized, these two address ranges are disabled. Byte mode is then enabled in the 21164 and 21174. Byte mode is the only way to access the flash ROM in address range 87.C000.0000 to 87.FFFF.FFFF. 21164 byte instructions LDBU and STB must be used to access this region. Any other instruction will produce UNDEFINED results with the possibility of damaging the flash ROM.

3.5 Interrupts

This section describes the AlphaPC 164UX interrupt logic. PCI-, ISA-, and 21174generated interrupts are described. Figure 3–5 shows the interrupt logic.

The PCI-to-ISA SIO bridge chip provides the functionality of two 8259 interrupt control devices. These ISA-compatible interrupt controllers are cascaded so that 14 external and 2 internal interrupts are available. The PCI interrupt acknowledge command should be used to read the interrupt request vector from the SIO.

However, the AlphaPC 164UX system has more external interrupts than the SIO can handle. They are sent to an external Shift Registers. This Shift Registers takes these interrupts with parallel. When the Shift Registers are clocked, data is shifted toward the serial output and generates **irqchain2** finally. During reset, **irq<3:0>** convey the system clocking ratios and delays, which are set by jumpers on J28.

Table 3–2 lists each system interrupt, its fixed interrupt priority level (IPL), and its AlphaPC 164UX implementation. Table 3–3 lists each ISA bus interrupt and its AlphaPC 164UX implementation.

Figure 3-5 Interrupt Logic

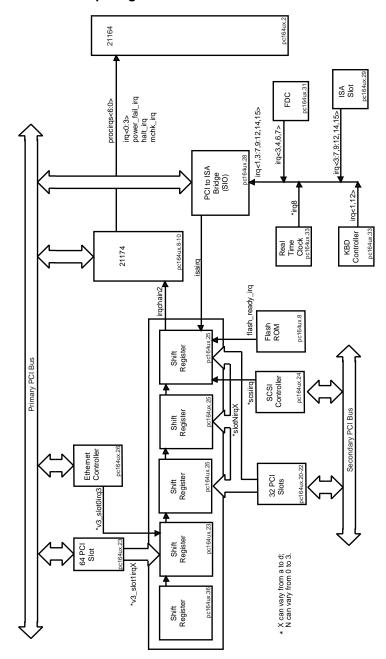


Table 3–2 AlphaPC 164UX System Interrupts

21164 Interrupt	IPL ¹	Suggested Usage	AlphaPC 164UX Usage
irq<0>	20	Corrected system error	Corrected ECC error and sparse space reserved encodings detected by the 21174
irq<1>	21	_	PCI and ISA interrupts
irq<2>	22	Interprocessor and timer interrupts	
irq<3>	23	_	Reserved
pwr_fail_irq	30	Powerfail interrupt	Reserved
mchk_irq	31	System machine check interrupt	SIO NMI and 21174 errors
hlt_irq	_	Halt	Reserved

¹ IPL = interrupt priority level (fixed).

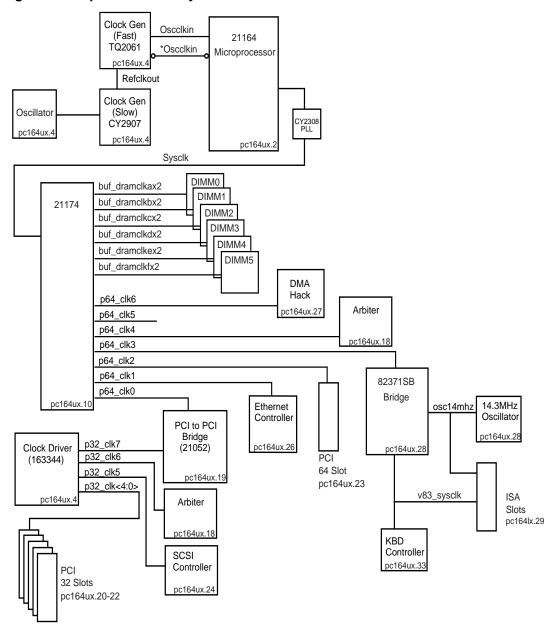
Table 3-3 ISA Interrupts

Internal	
Interrupt Number	Interrupt Source
IRQ0	Internal timer
IRQ1	Keyboard
IRQ2	Interrupt from controller 2
IRQ3	COM2
IRQ4	COM1
IRQ5	Available
IRQ6	Diskette (floppy)
IRQ7	Parallel port
*IRQ8 ¹	Reserved
IRQ9	Available
IRQ10	Available
IRQ11	Available
IRQ12	Mouse
IRQ13	Available
IRQ14	IDE
IRQ15	IDE

¹ The * symbol indicates an active low signal.

3.6 System Clocks

Figure 3–6 shows the AlphaPC 164UX clock generation and distribution scheme.


The AlphaPC 164UX system includes input clocks to the microprocessor as well as clock distribution for the various system memory and I/O devices. There are other miscellaneous clocks for ISA bus support. System clocking can be divided into the following three main areas:

- **Microprocessor input clock** The input clock runs at the operating frequency of the 21164 microprocessor. The AlphaPC 164UX supports cycle times from 3.33ns to 1.25 ns. This implies input clock frequencies from 300MHz to 800 MHz. The clock is provided by using a TQ2061. The TQ2061's output is used as the input clock for the 21164.
- **Clock distribution** Clock distribution includes the distribution of system clocks from the 21164 microprocessor to the system logic. The AlphaPC 164UX clock distribution scheme is flexible enough to allow the majority of cycle-time combinations to be supported. Because the PCI is synchronous to the system clock generated by the 21164 microprocessor, the PCI cycle time is a multiple of the 21164 cycle time. This distribution scheme supports a PCI operation of 33 MHz.
- Miscellaneous clocks The miscellaneous clocks include those needed for ISA and the combination controller. These clocks are provided by a crystal and a frequency generator with fixed scaling.

System Clocks

Figure 3-6 AlphaPC 164UX System Clocks

Reset and Initialization

At system reset, the 21164 microprocessor's procirq<3:0> pins are driven by the clock divisor values set by four jumpers on J28. During normal operation, these signals are used for interrupt requests. The pins are either switched to ground or pulled up in a specific combination to set the 21164 microprocessor's internal divider.

The 21164 microprocessor produces the divided clock output signal sysclk that drives the CY2308 PLL clock-driver chip. This clock provides the references to synchronize the 21164 microprocessor and the 21174 chip. The 21174 provides the system memory and I/O (PCI) clock references. It also provides system-level clocking to DIMMs, PCI 64slot, the PCI-ISA bridge, the PCI-PCI controller, Ethernet Controller, DMA Hack and the PCI arbiter.

3.7 Reset and Initialization

An external reset switch can be connected to J37 (pc164UX.35). The reset function initializes the 21164 microprocessor and the system logic. The vccok signal provides a full system initialization, equivalent to a power-down and power-up cycle.

When dc_ok signal is inserted to 21174 chip, 21174 chip drives *p64_rst signal to reset primary PCI devices and PCI to PCI bridge.

As soon as *p64_rst is inserted, PCI to PCI bridge drives *p32_rst signal to reset secondary PCI devices

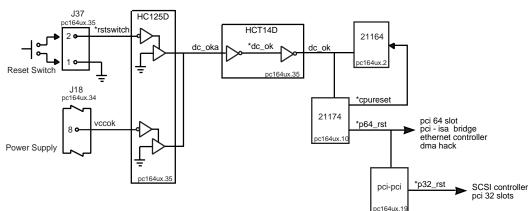


Figure 3-7 System Reset and Initialization

DC Power Distribution

3.8 DC Power Distribution

The AlphaPC 164UX drives its system power from a user-supplied PC power supply. The power supply must provide +12 V dc and -12 V dc, -5 V dc, +3 V dc, and +5 V dc (Vdd). The dc power is supplied through power connector J18 (pc164ux.34), as shown in Figure 3-8. Power is distributed to the board logic through dedicated power planes within the eight-layer board structure.

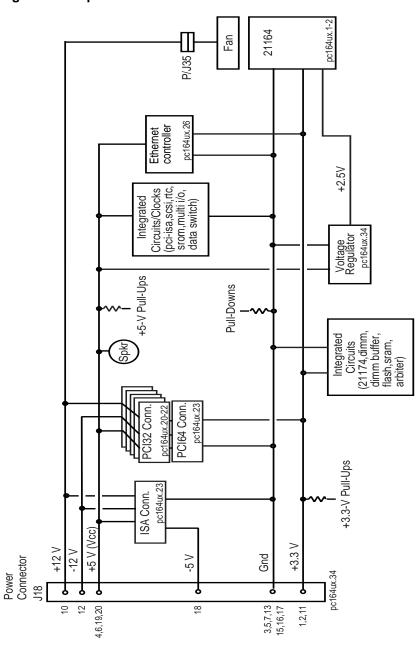


Figure 3-8 AlphaPC 164UX Power Distribution

Upgrading the AlphaPC 164UX

For higher system speed or greater throughput, you can upgrade SDRAM memory by replacing DIMMs with those of greater size.

When configuring or upgrading SDRAM, observe the following rules:

- Each DIMM must be a 168-pin unbuffered version and have a frequency of 100 MHz.
- All DIMMs must be of equal size if they are in the same bank.

4.1 Upgrading SDRAM Memory

You can upgrade memory in the AlphaPC 164UX by adding more DIMMs or replacing the ones that you have with a greater size.

Use the following general guidelines:

- 1. Observe antistatic precautions. Handle DIMMs only at the edges to prevent damage.
- 2. Remove power from the system.
- 3. Open levers and align the DIMM.
- 4. Firmly push the module into the connector. Ensure that the DIMM snaps into the plastic locking levers on both ends.
- 5. Restore power to the system.

4.2 Increasing Microprocessor Speed

This section describes how to complete the following actions to increase microprocessor speed:

- Replace the Digital Semiconductor 21164 microprocessor with an Alpha chip that has a higher speed rating.
- Reconfigure the clock divisor jumpers.

4.2.1 Preparatory Information

Caution:

Static-Sensitive Component – Due to the sensitive nature of electronic components to static electricity, anyone handling the microprocessor *must* wear a properly grounded antistatic wriststrap. Use of antistatic mats, ESD approved workstations, or exercising other good ESD practices is recommended.

A Samsung 21164 microprocessor with a higher speed rating is available from your local distributor. See Appendix B for information about supporting products.

When replacing the microprocessor chip, also replace the thermal conducting GRAFOIL pad. See Appendix B for information about the parts kit, which includes the heat sink, GRAFOIL pad, two hex nuts, heat-sink clips, 60-mm fan, and four screws.

4.2.2 Required Tools

The following tools are required when replacing the microprocessor chip:

A TS30 manual nut/torque driver (or equivalent) with the following attachments is required to affix the heat sink and fan to the microprocessor's IPGA package:

- 1/4-inch hex bit
- 7/16-inch socket with 1/4-inch hex drive
- #2 Phillips-head screwdriver bit

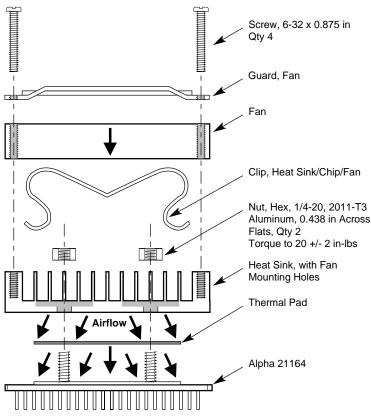
4.2.3 Removing the 21164 Microprocessor

Remove the microprocessor currently in place at location U55 by performing the following steps:

- 1. Unplug the fan power/sensor cable from connector J35 (see Figure 2–1).
- 2. Remove the four 6-32 X 0.875-inch screws that secure the fan and fan guard to the heat sink.
- 3. Remove the fan and fan guard.

- 4. If the sink/chip/fan clip is used, remove it by unhooking its ends from around the ZIF socket retainers.
- 5. Using a 7/16-inch socket, remove the two nuts securing the heat sink to the microprocessor studs.
- 6. Remove the heat sink by gently lifting it off the microprocessor.
- 7. Remove and discard the GRAFOIL heat conduction pad.
- 8. Thoroughly clean the bottom surface of the heat sink before affixing it to the new microprocessor.
- 9. Lift the ZIF socket actuator handle to a full 90° angle.
- 10. Remove the microprocessor chip by lifting it straight out of the socket.

4.2.4 Installing the 21164 Microprocessor


Install the new microprocessor in location U55 by performing the following steps:

Note: Install the heat sink only after the microprocessor has been assembled to the ZIF socket.

- 1. Observe antistatic precautions.
- 2. Lift the ZIF socket actuator handle to a full 90° angle.
- 3. Ensure that all the pins on the microprocessor package are straight.
- 4. The ZIF socket and microprocessor are keyed to allow for proper installation. Align the microprocessor, with its missing AD01 pin, with the corresponding plugged AD01 position on the ZIF socket. Gently lower into position.
- 5. Close the ZIF socket actuator handle to its locked position.
- 6. Install the heat sink and heat-sink fan as directed in the following steps. A heat-sink/fan kit is available from the vendor listed in Appendix B. Refer to Figure 4–1 for heat-sink and fan assembly details.

Figure 4-1 Fan/Heat-Sink Assembly

FM-06013.AI4

- a. Put the GRAFOIL thermal pad in place. The GRAFOIL pad is used to improve the thermal conductivity between the chip package and the heat sink by replacing micro air pockets with a less insulative material. Perform the following steps to position the GRAFOIL pad:
 - 1. Perform a visual inspection of the package slug to ensure that it is free of contamination.
 - 2. Wearing clean gloves, pick up the GRAFOIL pad. *Do not* perform this with bare hands because skin oils can be transferred to the pad.
 - 3. Place the GRAFOIL pad on the gold-plated slug surface and align it with the threaded studs.

- b. Attach the microprocessor heat sink. The heat-sink material is clear anodized, hot-water-sealed, 6061-T6 aluminum. The nut material is 2011-T3 aluminum (this grade is critical). Perform the following steps to attach the heat sink:
 - 1. Observe antistatic precautions.
 - 2. Align the heat-sink holes with the threaded studs on the ceramic package.
 - 3. Handle the heat sink by the edges and lower it onto the chip package, taking care not to damage the stud threads.
 - 4. Set a calibrated torque driver to 20 in-lbs, ± 2 in-lbs (2.3 Nm, ± 0.2 Nm). The torque driver should have a mounted 7/16-inch socket.
 - 5. Insert a nut into the 7/16-inch socket, place on one of the studs, and tighten to the specified torque. Repeat for the second nut.
 - 6. If the sink/chip/fan clip is used, properly install it by positioning it over the assembly and hooking its ends around the ZIF socket retainers.
- c. Attach the heat-sink fan assembly:
 - 1. Place the fan assembly on top of the heat sink, aligning the fan mounting holes with the corresponding threaded heat-sink holes. Align the fan so that the fan power/sensor wires exit the fan closest to connector J35 (see Figure 2–1). Fan airflow must be directed into the heat sink (fan label facing down toward the heat sink).
 - 2. Place the fan guard on top of the fan. Orient the guard so that the corner mounting areas lay flush against the heat sink.
 - 3. Secure the fan and fan guard to the heat sink with four 6-32 X 0.875-inch screws.
 - 4. Plug the fan power/sensor cable into connector J35.

Important: When installing the microprocessor, you must change the frequency of its clock output by setting the system clock divisor jumpers, as described in Section 2.2.

Power and Environmental Requirements

5.1 Power Requirements

The AlphaPC 164UX motherboard requires a minimum of a 300 watt power supply. The power supply must be ATX-compliant.

Table 5-1 Power Supply DC Current Requirements

Voltage	Current	Current	
+3.3 Vdc,±5%	14 A		
+5 Vdc,±5%	25 A		
-5 Vdc,±5%	0.5 A		
+12 Vdc,±5%	10 A		
-12 Vdc,±5%	0.5 A		

Caution:

Fan sensor required. The 21164 microprocessor cooling fan *must* have a built-in sensor that will drive a signal if the airflow stops. The sensor is connected to the motherboard connector J35. When the signal is generated, the speaker generates a tone..

5.2 Environmental Requirements

The 21164 microprocessor is cooled by a small fan blowing directly into the chip's heat sink. The AlphaPC 164UX motherboard is designed to run efficiently using only this fan. Additional fans may be necessary depending upon cabinetry and the requirements of add-in cards and disk drives.

Physical Parameters

The AlphaPC 164UX motherboard is specified to run within the environment listed in Table 5–2.

Table 5-2 AlphaPC 164UX Motherboard Environmental Requirements

Parameter	Specification
Operating Temperature	10°C to 40°C (50°F to 104°F)
Storage Temperature	-55°C to 125°C (-67°F to 257°F)
Relative Humidity	10% to 90% with maximum wet bulb temperature 28°C (82°F) and a minimum dew point 2°C (36°F)
Rate of (dry bulb) temperature change	11°C/hour ±2°C/hour (20°F/hour ±4°F/hour)

5.3 Physical Parameters

This section has four parts: the first illustrates the board dimensions for AlphaPC 164UX. the second shows the distances between the board mounting holes and the edges of the board; the third shows the vertical clearances required by the board components at all points within the border of the AlphaPC 164UX.

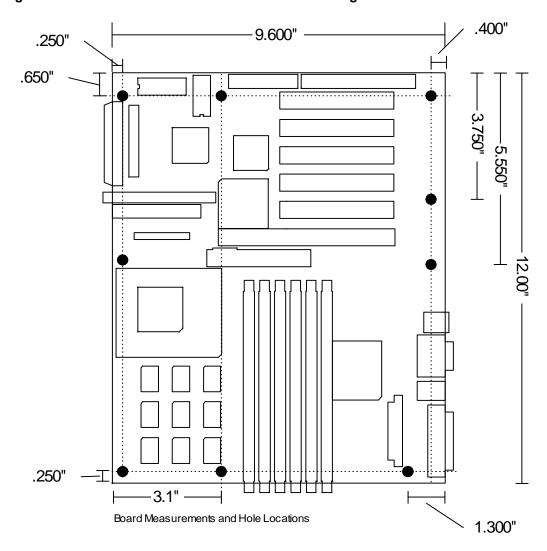
All holes and board measurements are compliant with the ATX 2.01 specification. The AlphaPC 164UX exceeds the ATX height indications in two places. The first is (the 2.5' region). The second is at the location of the SCSI connectors(the 1.0' region to the left of the second PCI slots).

the fourth shows the ATX I/O shield dimensions.

5.3.1 Board Dimensions

The AlphaPC 164UX motherboard is an ATX-size printed wiring board (PWB) with the following dimensions:

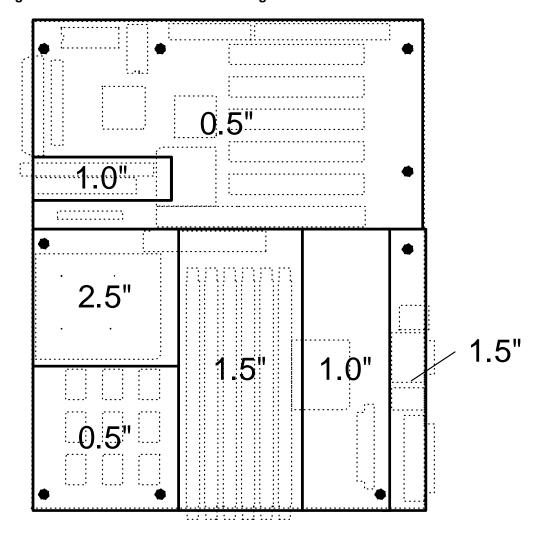
- Length: $30.48 \text{ cm} (12.0 \text{ in } \pm 0.0005 \text{ in})$
- Width: 24.38 cm (9.6 in ± 0.0005 in)
- Height: 6.86 cm (2.7 in)


The board can be used in certain desktop and deskside systems that have adequate clearance for the 21164 heat sink and its cooling fan. All ISA and PCI expansion slots are usable in standard desktop or deskside enclosures.

5.3.2 Board Measurements and Hole Locations

Figure 5–1 shows the Board Measurements and Hole Locations for the AlphaPC 164UX.

Figure 5-1 Board measurement and Hole Position Diagram



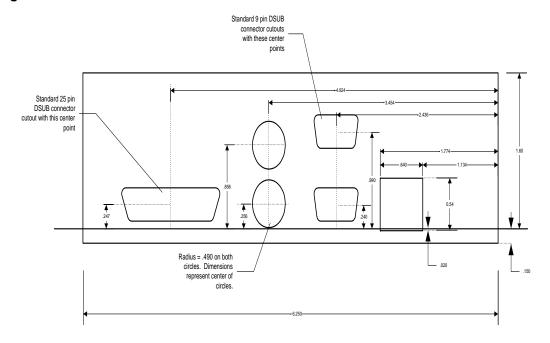
Physical Parameters

5.3.3 Board Vertical Clearance

Figure 5–2 shows the Board Vertical Clearance for the AlphaPC 164UX.

Figure 5–2 Board Vertical Clearance Diagram

Vertical Clearance Requirements



Physical Parameters

5.3.4 ATX I/O Shield Requirements

Figure 5–3 shows the ATX I/O shield dimensions for the AlphaPC 164UX.

Figure 5-3 ATX I/O Shield Dimensions

System Address Space

This appendix describes the mapping of 21164 40-bit physical addresses to memory and I/O space addresses. It also describes the translation of a 21164-initiated address (addr_h<39:4>) into a PCI address (ad<63:0>) and the translation of a PCI-initiated address into a physical memory address.

PCI addressing topics include dense and sparse address space and scatter-gather address translation for DMA operations.

1.1 Address Map

The system address mapping operates with byte/word transactions enabled or disabled. Byte/word operation is controlled by PYXIS_CTRL1<0> (IOA_BEN). Table A-1 shows system address mapping operations when IOA_BEN equals 0 (byte/word operation disabled).

Table A-1 Physical Address Map (Byte/Word Mode Disabled) (Sheet 1 of 2)

21164 Address ¹	Size (GB)	Selection
00.000.0000 – 01.FFFF.FFF	8.00	Main memory
E.0000.0000 – E.FFFF.FFF	4.00	Dummy memory region
80.0000.0000 – 83.FFFF.FFFF	16.00	PCI sparse memory region 0, 512MB
84.0000.0000 – 84.FFFF.FFFF	4.00	PCI sparse memory region 1, 128MB
85.0000.0000 - 85.7FFF.FFF	2.00	PCI sparse memory region 2, 64MB
85.8000.0000 – 85.BFFF.FFFF	1.00	PCI sparse I/O space region A, 32MB
85.C000.0000 - 85.FFFF.FFF	1.00	PCI sparse I/O space region B, 32MB
86.0000.0000 – 86.FFFF.FFFF	4.00	PCI dense memory
87.0000.0000 – 87.1FFF.FFFF	0.50	PCI sparse configuration space

Address Map

Table A-1 Physical Address Map (Byte/Word Mode Disabled) (Sheet 2 of 2)

21164 Address ¹	Size (GB)	Selection
87.2000.0000 – 87.3FFF.FFFF	0.50	PCI special/interrupt acknowledge
87.4000.0000 – 87.4FFF.FFFF	0.25	21174 main CSRs
87.5000.0000 – 87.5FFF.FFF	0.25	21174 memory control CSRs
87.6000.0000 – 87.6FFF.FFFF	0.25	21174 PCI address translation
87.7000.0000 – 87.7FFF.FFF	0.25	Reserved
87.8000.0000 – 87.8FFF.FFF	0.25	21174 miscellaneous CSRs
87.9000.0000 – 87.9FFF.FFFF	0.25	21174 power management CSRs
87.A000.0000 – 87.AFFF.FFFF	0.25	21174 interrupt control CSRs
87.B000.0000 – 87.FFFF.FFF	1.25	Reserved

¹ All addresses in the range of 80.0000.0000 and 8F.FFFF.FFFF are aliased. Address bits 36 through 38 are ignored in the address.

Table A-2 shows system address mapping operations when IOA_BEN equals 1 (byte/word operation enabled).

Table A-2 Physical Address Map (Byte/Word Mode Enabled) (Sheet 1 of 2)

21164 Address	Size (GB)	Selection
00.000.0000 – 01.FFFF.FFFF	8.00	Main memory
E.0000.0000 – E.FFFF.FFF	4.00	Dummy memory region
80.0000.0000 - 83.FFF.FFF	16.00	PCI sparse memory region 0, 512MB
84.0000.0000 – 84.FFFF.FFFF	4.00	PCI sparse memory region 1, 128MB
85.0000.0000 - 85.7FFF.FFF	2.00	PCI sparse memory region 2, 64MB
85.8000.0000 – 85.BFFF.FFFF	1.00	PCI sparse I/O space region A, 32MB
85.C000.0000 – 85.FFFF.FFF	1.00	PCI sparse I/O space region B, 32MB
86.0000.0000 – 86.FFF.FFF	4.00	PCI dense memory
87.0000.0000 – 87.1FFF.FFFF	0.50	PCI sparse configuration space
87.2000.0000 – 87.3FFF.FFFF	0.50	PCI special/interrupt acknowledge
87.4000.0000 – 87.4FFF.FFFF	0.25	21174 main CSRs
87.5000.0000 – 87.5FFF.FFF	0.25	21174 memory control CSRs

Address Map

Table A-2 Physical Address Map (Byte/Word Mode Enabled)

(Sheet 2 of 2)

· · · · · · · · · · · · · · · · · · ·		•
21164 Address	Size (GB)	Selection
87.6000.0000 – 87.6FFF.FFFF	0.25	21174 PCI address translation
87.7000.0000 – 87.7FFF.FFF	0.25	Reserved
87.8000.0000 – 87.8FFF.FFF	0.25	21174 miscellaneous CSRs
87.9000.0000 – 87.9FFF.FFF	0.25	21174 power management CSRs
87.A000.0000 – 87.AFFF.FFFF	0.25	21174 interrupt control CSRs
87.B000.0000 – 87.BFFF.FFFF	0.25	Reserved
88.0000.0000 – 88.FFFF.FFF	4.00	PCI memory space INT8
98.0000.0000 – 98.FFFF.FFFF ¹	4.00	PCI memory space INT4
A8.0000.0000 – A8.FFF.FFFF ¹	4.00	PCI memory space INT2
B8.0000.0000 – B8.FFFF.FFFF ¹	4.00	PCI memory space INT1
89.0000.0000 – 89.FFFF.FFF	4.00	PCI I/O space INT8
99.0000.0000 – 99.FFFF.FFFF ¹	4.00	PCI I/O space INT4
A9.0000.0000 – A9.FFFF.FFFF ¹	4.00	PCI I/O space INT2
B9.0000.0000 – B9.FFFF.FFFF ¹	4.00	PCI I/O space INT1
8A.0000.0000 – 8A.FFFF.FFF	4.00	PCI configuration space, type 0, INT8
9A.0000.0000 – 9A.FFF.FFF ¹	4.00	PCI configuration space, type 0, INT4
AA.0000.0000 – AA.FFFF.FFFF ¹	4.00	PCI configuration space, type 0, INT2
BA.0000.0000 – BA.FFFF.FFFF ¹	4.00	PCI configuration space, type 0, INT1
8B.0000.0000 – 8B.FFFF.FFF	4.00	PCI configuration space, type 1, INT8
9B.0000.0000 – 9B.FFFF.FFF ¹	4.00	PCI configuration space, type 1, INT4
AB.0000.0000 – AB.FFFF.FFFF ¹	4.00	PCI configuration space, type 1, INT2
BB.0000.0000 – BB.FFFF.FFF ¹	4.00	PCI configuration space, type 1, INT1
C7.C000.0000 - C7.FFFF.FFFF ²	1.00	Flash ROM read/write space

Address bits 37 and 38 are generated by the 21164 and not by software. These address bits are used by the 21164 to indicate to external hardware that this transaction is a byte, word, longword, or quadword operation.

² Read/write transactions to flash ROM must be done with byte transactions to address range 87.C000.0000 through 87.FFFF.FFFF. All other transaction types will produce UNDEFINED results.

Address Map

The 21164 address space is divided into two regions using physical address <39>:

- 0-21164 access is to the cached memory space.
- 1 21164 access is to noncached space. This noncached space is used to access memory-mapped I/O devices. Mailboxes are not supported.

The noncached space contains the CSRs, noncached memory space (for diagnostics), and the PCI address space. The PCI defines three physical address spaces: a 64-bit PCI memory space, a 4GB PCI I/O space, and a 256 byte-per-device PCI configuration space. In addition to these three address spaces on the PCI, the 21164's noncached space is also used to generate PCI interrupt acknowledge and special cycles.

The 21164 has visibility to the complete address space. It can access the cached memory region, the CSR region, the PCI memory region, the PCI I/O region, and the configuration regions (see Figure 1–1).

The PCI devices have a restricted view of the address space. They can access any PCI device through the PCI memory space or the PCI I/O space; but they have no access to the PCI configuration space. The system restricts access to the system memory (for DMA operations) to the use of five programmable windows in the PCI memory space (see Figure 1–1).

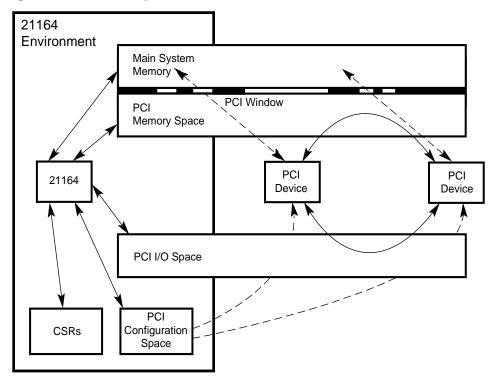


Figure 1-1 Address Space Overview

LJ-05395.AI4

DMA access to the system memory is achieved using windows in one of the following three ways:

- Directly, using the "Monster Window" with dual-address cycles (DAC), where ad<33:0> equals addr_h<33:0>.
- Directly-mapped, by concatenating an offset to a portion of the PCI address.
- Virtually, through a scatter-gather translation map. The scatter-gather map allows any 8KB page of PCI memory address region to be redirected to any 8KB cached memory page, as shown in Figure 1–2.

PCI Address Space

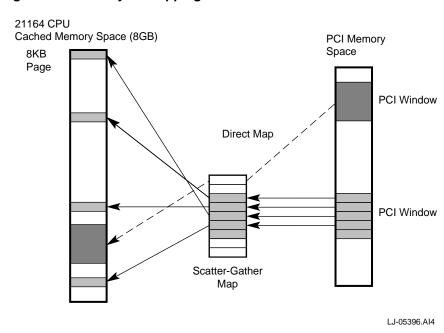


Figure 1-2 Memory Remapping

1.2 PCI Address Space

The system generates 32-bit PCI addresses but accepts both 64-bit address (DAC¹) cycles and 32-bit PCI address (SAC²) cycles. Accessing main memory is as follows:

- Window 4, the "Monster Window," provides full access to main memory. It is accessed by DAC only with ad<40> equal to 1. Memory address addr_h<33:0> equals PCI address ad<33:0>.
- Window 3 can be either DAC or SAC, but not both. If DAC, ad<63:40> must be zero, ad<39:32> must match the DAC register, and ad<31:0> must hit in window 3.
- Windows 0, 1, and 2 are SAC-only.

² Single-address cycle (PCI 32-bit address transfer) requires that address bits <63:32> contain a value of zero.

¹ Dual-address cycle (PCI 64-bit address transfer) requires that address bits <63:32> contain a nonzero value.

1.3 21164 Address Space

Figure 1–3 shows an overview of the 21164 address space. Figure 1–4 shows how the 21164 address map translates to the PCI address space and how PCI devices access the 21164 memory space using DMA transactions. The PCI memory space is double mapped via dense and sparse space.

The 21164 I/O address map has the following characteristics:

- Provides 4GB of dense¹ address space to completely map the 32-bit PCI memory space.
- Provides abundant PCI sparse¹ memory address space because sparse-space regions have byte granularity and is the safest memory space to use (that is, no prefetching). Furthermore, the larger the space the less likely software will need to dynamically relocate the sparse-space segments. The main problem with sparse space is that it wastes 21164 address space (for example, 16GB of 21164 address space maps to 512MB of PCI sparse space).

The system provides three PCI sparse-space memory regions, allowing 704MB of total sparse-space memory. The three regions are relocatable using the HAE MEM CSR. The simplest configuration allows for 704MB of contiguous memory space.

- 512MB region, which may be located in any naturally aligned 512MB segment of the PCI memory space. Software programmers may find this region sufficient for their needs and can ignore the remaining two regions.
- 128MB regions, which may be located on any naturally aligned 128MB segment of the PCI memory space.
- 64MB region, which may be located on any naturally aligned 64MB segment of the PCI memory space.
- Limits the PCI I/O space to sparse space. Although the PCI I/O space can handle 4GB, most PCI devices will not exceed 64KB for the foreseeable future. The system provides 64MB of sparse I/O space because address decoding is faster.
- Provides two PCI I/O sparse-space regions: region A, which is 32MB and is fixed in PCI segment 0-32MB; and region B, which is also 32MB, but is relocatable using the HAE IO register.

¹ Dense and sparse space address space are described later in this chapter.

Figure 1-3 21164 Address Space Configuration

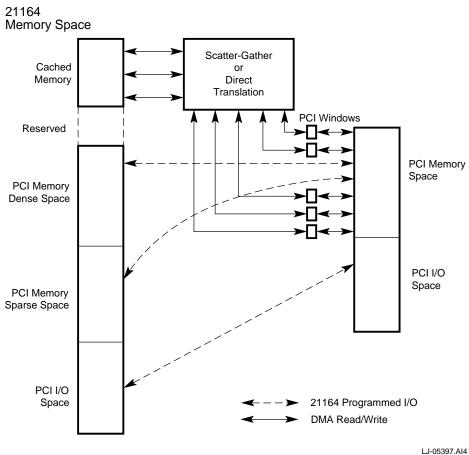
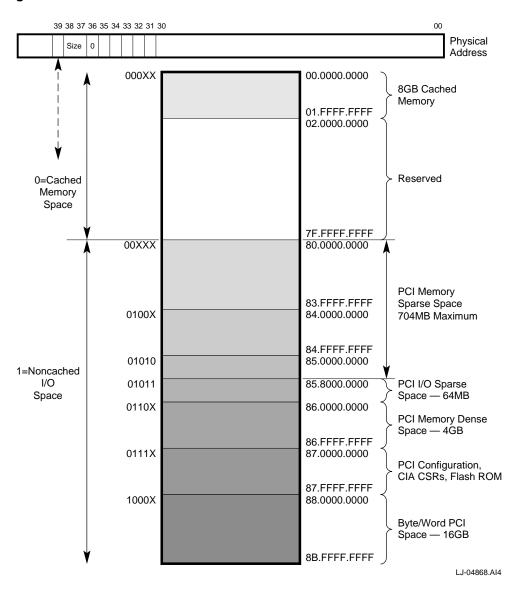



Figure 1-4 21164 and DMA Read and Write Transactions

A.3.1 System Address Map

Figure 1–5 shows the following system address regions:

- Main memory address space contains 8GB. All transactions contain 64 bytes, are cache-block aligned, and are placed in cache by the 21164. Both Istream and Dstream transactions access this address space.
- PCI sparse-space memory region 1 contains 512MB. Noncached 21164 read/write transactions are allowed, including byte, word, tribyte, longword (LW), and quadword (QW) types. There is no read prefetching.
- PCI sparse-space memory region 2 contains 128MB.
- PCI sparse-space memory region 3 contains 64MB.
- PCI I/O sparse-space memory region A contains 32MB and is not relocatable.
- PCI I/O sparse-space memory region B contains 32MB and is relocatable by way of the HAE_IO register.
- PCI dense memory space contains 4GB for 21164 noncached 21164 transactions. It is used for devices with access granularity greater or equal to a LW.
 Read prefetching is allowed, and thus read transactions can have no side effects.
- The PCI configuration space is used for noncached 21164 access. Sparse-space read/write transactions are allowed, including byte, word, tribyte, LW, and QW types. Prefetching of read data is not allowed.

Figure 1–6 shows a detailed view of PCI configuration space that includes 21174 CSRs. The 21174 CSR address space is chosen for hardware convenience.

Figure 1-5 System Address Map

Main Memory — 8GB

39 38 35 3	4 33	3 0
0 0 0 0 0	Memory Address	

PCI Sparse Memory Space — 512MB Region 1

39 38	3 35	34 33	33 7	6	3 2	2	0
1 0	X 0 0	0	PCI Memory Address <28:2>	Siz	e (0	0

PCI Sparse Memory Space — 128MB Region 2

39 38	35 3	34 3	3 32	<u>.1</u>	7 6	3	2	1 (<u>) </u>
1 0 X	0 0	1 0	0	PCI Memory Address <26:2>		Size	0	0 0	5

PCI Sparse Memory Space — 64MB Region 3

 39	38	35	34	33	32	2 31	1 3	<u> </u>	7	6	3	2	1	0
1	0 X	0 0	1	0	1	0)	PCI Memory Address <25:2>		Siz	ze	0	0	0

PCI I/O Sparse Space — 32MB Region A

39 38	35 34 33 32 31 30 29		7 6	3 2	1	0
1 0 X 0	0 0 1 0 1 1 0	PCI I/O Address <24:2>	Size	9 0	0	0

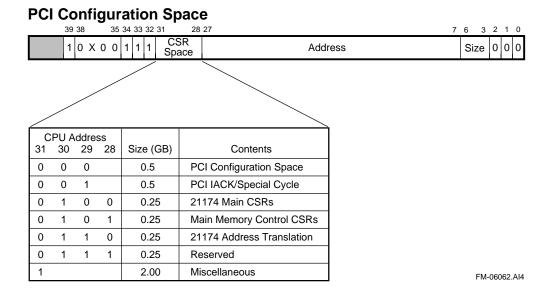
PCI I/O Sparse Space — 32MB Region B

 39	38			35	34	33	32	31	30	9	7	6 3	3 2	1	0
1	0	Χ	0	0	1	0	1	1	1	PCI I/O Address <24:2>		Size	0	0	0

PCI Memory Dense Space — 4GB

39 38	35 34 33 32 31 30 29	2 1 0
1 0 X 0	PCI Memory Address <31:2>	0 0

PCI Configuration Space


39 38	35 34 33 32	31 28 27	7	6 3	2	1	0
1 0 X 0	0 0 1 1 1	CSR Space	Address	Size	0	0	0

LJ-05398.AI4

21164 Byte/Word PCI Space

Figure 1-6 21174 CSR Space

1.4 21164 Byte/Word PCI Space

The 21164 supports byte/word instructions that allow software to perform byte granularity transactions to and from I/O space without using sparse address space. This space is divided into four regions: memory, I/O, configuration – type 0, and configuration – type 1, as shown in Figure 1–7.

21164 Byte/Word PCI Space

Figure 1–7 Byte/Word PCI Space

PCI Memory Space — 4GB

39 38 37 36 35 34 33 32 31		2 1 0
1 Size X 1 0 0 0	PCI Memory Address <31:2>	0 0

PCI I/O Space — 4GB

PCI Type 0 Configuration Space — 4GB

 39 38 37 36 35	34 33	3 32	31 2	2 1	1	0
1 Size X 1	0 1	0	PCI Configuration Address <31:2>	O)	0

PCI Type 1 Configuration Space — 4GB

	39 38 3	7 36	35	34	33	32	31	2	1	0
	1 Siz	e X	1	0	1	1	PCI Configuration Address <31:2>		0	1

LJ-05399.AI4

Operations are the same for the four regions. The 21164 will issue a single byte/word read or write transaction for PCI byte and word instructions. The 21164 will not pack longword load instructions. The 21164 can pack up to eight longword store instructions for a single 32-byte block into one transaction. Up to four quadword instructions can also be packed to the same 32-byte block. Byte/word support is enabled when 21164 IPR register ICSR<17> equals 1 and when 21174 CSR register PYXIS_CTRL1<0> also equals 1.

21164 Byte/Word PCI Space

Table 1–3 shows noncached 21164 addresses when byte/word support is enabled.

Table A-3 21164 Byte/Word Addressing

	addr_h	int4	_valid		
Instruction	<38:37>	<3>	<2>	<1>	<0>
LDQ	00	INT8	_	_	_
LDL	01	addr_h<3:2>	_	Undefined	_
LDWU	10	addr_h<3:1>	_	_	Undefined
LDBU	11	addr_h<3:0>	_	_	_
STQ	00	INT4 Mask	_	_	_
STL	01	INT4 Mask	_	_	_
STW	10	addr_h<3:1>	_	_	Undefined
STB	11	addr_h<3:0>	_	_	_

A.4.1 21164 Size Field

Table A-4 shows the calculation of the 21164 size field.

Table A-4 21164 Byte/Word Translation Values

Size<38:37>	Data Size
00	INT8 (Quadword — 8 bytes, 64 bits)
01	INT4 (Longword — 4 bytes, 32 bits)
10	INT2 (Word — 2 bytes, 16 bits)
11	INT1 (Byte — 1 byte, 8 bits)

The following transactions use single data transfers on the PCI:

- INT1 and INT2 read and write transactions
- INT4 read transactions

The following transactions have multiple data transfers on the PCI:

- INT4 write transactions
- INT8 read and write transactions

1.5 Cacheable Memory Space

Cacheable memory space is located in the range 00.0000.0000 to 01.FFFF.FFF. The 21174 recognizes the first 8GB to be in cacheable memory space. The block size is fixed at 64 bytes. Read and flush commands to the 21164 caches occur for DMA traffic.

1.6 PCI Dense Memory Space

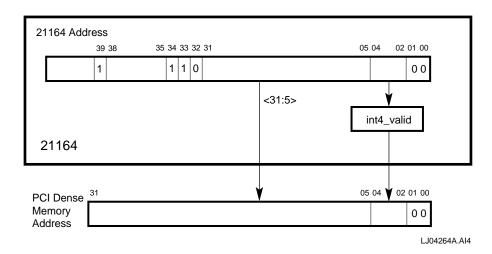
PCI dense memory address space is located in the range 86.0000.0000 to 86.FFFF.FFF. This address space is typically used for memory-like data buffers such as a video frame buffer or a nonvolatile RAM (NVRAM). Dense space does not allow byte or word access, but has the following advantages over sparse space:

- Contiguous locations Some software, such as the default graphics routines of the Windows NT operating system, requires memory-like transactions. These routines cannot use sparse-space addresses, because they require transactions on the PCI bus to be at adjacent 21164 addresses, instead of being widely separated as in sparse space. As a result, if the user-mode driver manipulates its frame buffer in sparse space, it cannot hand over the buffer to the common Windows NT operating system graphics code.
- Higher bus bandwidth PCI bus burst transfers are not usable in sparse space except for a 2-longword burst for quadword write transactions. Dense space is defined to allow both burst read and write transactions.
- Efficient read/write buffering In sparse space, separate transactions use separate read or write buffer entries. Dense space allows separate transactions to be collapsed in read and write buffers (as the 21164 does).
- Few memory barriers (MBs) In general, sparse-space transactions are separated by MB instructions to avoid read/write buffer collapsing. Dense-space transactions only require barriers when explicit ordering is required by the software.

Dense space is provided for the 21164 to access PCI memory space, not for access to PCI I/O space. Dense space has the following characteristics:

• It holds a one-to-one mapping between 21164 addresses and PCI addresses. A longword address from the 21164 will map to a longword on the PCI with no shifting of the address field. Hence, the term dense space. Sparse space, on the other hand, maps a large piece of 21164 memory space (32 bytes) to a small piece (such as a byte) on the PCI.

PCI Dense Memory Space


- The concept of dense space (and sparse space) is applicable only to a 21164-generated address. There is no such thing as dense space (or sparse space) for a PCI generated address.
- Byte or word transactions are not possible in dense space. The minimum access granularity is a longword on write transactions and a quadword on read transactions. The maximum transfer length is 32 bytes (performed as a burst of eight longwords on the PCI). Any combination of longwords may be valid on write transactions. Valid longwords surrounding an invalid longword(s) (called a hole) are required to be handled correctly by all PCI devices. The 21174 will allow such holes to be issued.
- Read transactions will always be performed as a burst of two or more longwords on the PCI because the minimum granularity is a quadword. The 21164 can request a longword but the 21174 will always fetch a quadword, thus prefetching a second longword. Therefore, this space cannot be used for devices that have read side effects. Although a longword may be prefetched, the prefetch buffer is not treated as a cache and so coherency is not an issue. A quadword read transaction is not atomic on the PCI; that is, the target device is at liberty to force a retry after the first longword of data is sent, and then to allow another PCI device to take control of the PCI bus¹.
- The 21164 merges noncached reads of up to 32 bytes maximum. The largest dense-space read transaction is 32 bytes from the PCI bus.
- Write transactions to dense space are buffered in the 21164 chip. The 21174 supports a burst length of 8 on the PCI, corresponding to 32 bytes of data. Also, the 21174 provides four 32-byte write buffers to maximize I/O write transaction performance. These four buffers are strictly ordered. Write transactions are sent out on the bus in the order that they were received from the 21164. Avoid write buffer merging and use memory barrier (MB) and write memory barrier (WMB) instructions carefully.

¹ The 21174 does not drive the PCI lock signal and this cannot ensure atomicity. This is true of all current Alpha microprocessors.

Figure 1–8 shows dense-space address generation.

Figure 1-8 Dense-Space Address Generation

The following list describes address generation in dense space:

- addr_h<31:5> value is sent directly out on ad<31:5>.
- addr_h<4:2> is not sent out by the 21164 and instead is inferred from the int4 valid<3:0>.
- **ad<4:3>** is a copy of **addr_h<4:3>**.
- ad<2> differs for read and write transactions as follows:
 - For a read transaction, **ad<2>** is zero (that is, the minimum read transaction resolution in noncached space is a quadword).
 - For a write transaction, ad<2> equals addr h<2>.

1.7 PCI Sparse Memory Space

The system provides three regions of contiguous 21164 address space that maps to PCI sparse memory space. The total 21164 range is from 80.0000.0000 to 85.7FFF.FFFF.

A.7.1 Hardware Extension Register (HAE_MEM)

In sparse space, **addr_h<7:3>** are used to encode byte enable bits, size bits and the low-order PCI address, **ad<2:0>**. This means that there are now five fewer address bits available to generate the PCI physical address.

The system provides three sparse-space PCI memory regions and allows all three sparse-space regions to be relocated by way of bits in the HAE_MEM register. This provides software with great flexibility.

A.7.2 Memory Access Rules and Operation

The Alpha instruction set can express only aligned longword and quadword data references. The PCI bus requires the ability to express byte, word, tribyte, longword (double word), and quadword references. Intel processors are capable of generating unaligned references, so the 21174 should be able to emulate the resulting PCI transactions to ensure compatibility with PCI devices designed for Intel systems.

The size of the data transfer (byte, word, tribyte, longword, or quadword) and the byte enables are encoded in the 21164 address. The 21164 signals **addr_h<6:3>** are used for this purpose, leaving the remaining **addr_h<31:7>** signals to generate a PCI longword address <26:3>¹. This loss of address bits has resulted in a 21164 22GB sparse 32-bit address space that maps to only 704MB of address space on the PCI.

The rules for accessing sparse space are as follows:

- Sparse space supports all the byte encodings that may be generated in an Intel system to ensure compatibility with PCI devices/drivers. The results of some references are not explicitly defined. These are the missing entries in Table 1–6 (that is, word size with address<6:5> = 11). The hardware will complete the reference, but the reference is not required to produce any particular result, nor will the system report an error.
- Software must use longword load or store instructions (LDVSTL) to perform a reference of longword length or less on the PCI bus. The bytes to be transferred must be positioned within the longword in the correct byte lanes as indicated by the PCI byte enable bits. The hardware does not shift bytes within the longword. Quadword load and store instructions must be used only to perform quadword transfers. Use of STQ/LDQ instructions for any other references will produce UNPREDICTABLE results.

¹ Quadword encoding is provided by way of 21164 address bits <6:3>. In this case, 21164 address bit <7> is treated as zero by the hardware.

- Hardware does not perform read-ahead (prefetch) transactions in sparse space because read-ahead transactions may have detrimental side effects.
- Programmers are required to insert memory barrier (MB) instructions between sparse-space transactions to prevent collapsing in the 21164 write buffer. However, this is not always necessary. For example, consecutive sparse-space addresses will be separated by 32 bytes (and will not be collapsed by the 21164).
- Programmers are required to insert MB instructions if the sparse-space address ordering/coherency to a dense-space address is to be maintained.
- Table 1–6 shows encoding of the 21164 address for sparse-space read transactions to PCI space. An important point to note is that signals addr_h<33:5> are directly available from the 21164 pins. On read transactions, the 21164 sends out addr_h<2:0> indirectly on the int4_valid pins. Signals addr_h<2:0> are required to be zero. Transactions with addr_h<2:0> not equal to zero will produce UNPREDICTABLE results.
- Table A–5 shows the relation between int4_valid<3:0> and addr_h<4:3> for a sparse-space write transaction. Unlisted **int4_valid** patterns will produce UNPREDICTABLE results (that is, as a result of collapsing in the 21164 write buffer; or by issuing a STQ instruction when a STL instruction is required).

Table A-5 Int4 valid and 21164 Address Relationship

EV5 Data Cycle	Int4_valid<3:0> ¹	Address<4:3>	
First	00 01	0 0	
	00 10	0 0	
	01 00	0 1	
	10 00	0 1	
Second	00 01	10	
	00 10	10	
	01 00	11	
	10 00	11	
	$11\ 00\ (STQ)^2$	1 1	

¹ All other **int4_valid** patterns result in UNPREDICTABLE results.

² Only one valid STQ case is allowed.

Table 1–6 defines the low-order PCI sparse memory address bits. Signals addr_h<7:3> are used to generate the length of the PCI transaction in bytes, the byte enable bits, and ad<2:0>. The 21164 signals addr_h<30:8> correspond to the quadword PCI address and are sent out on ad<25:3>.

Table 1-6 PCI Memory Sparse-Space Read/Write Encodings

Siz	ze	Byte Offset addr h	21164 Instruction		PCI Byte	Data-In Register Byte Lanes
addr_h	addr_h<4:3>		Allowed			6332 310
		00		$A < 7 > ^2,00^3$	1110	OOOX
		01		A<7>,00	1101	OOXO
Byte	00	10	LDL,STL	A<7>,00	1011	OXOO
		11		A<7>,00	0111	XOOO
		00		A<7>,00	1100	OOXX
Word ⁴	01	01	LDL,STL	A<7>,00	1001	OXXO
		10		A<7>,00	0011	XXOO
		00		A<7>,00	1000	OXXX
Tribyte	10	01	LDL,STL	A<7>,00	0001	XXXO
Longword	11	00	LDL,STL	A<7>,00	0000	XXXX
Quadword	11	11	LDQ,STQ	000	0000	XXXX XXXX

Byte enable set to 0 indicates that byte lane carries meaningful data.

² A<7> = addr_h<7>.
3 In PCI sparse memory space, ad<1:0> is always zero.
4 The results of the example, word size with 21164 add ⁴ Missing entries (for example, word size with 21164 address = 11) enjoy UNPREDICTABLE results.

The high-order **ad<31:26>** are obtained from either the hardware extension register (HAE_MEM) or the 21164 address depending on sparse-space regions, as shown in Table 1–7. See the *Digital Semiconductor 21174 Core Logic Chip Technical Reference Manual* for more information about the 21174 HAE_MEM CSR.

Table 1-7 PCI Address Mapping

21164 Address	Region			ad			
		<31>	<30>	<29>	<28>	<27>	<26>
80.0000.0000 to 83.FFFF.FFFF	1	HAE_MEM <31>	HAE_MEM <30>	HAE_MEM <29>	CPU<33>	CPU<32>	CPU<31>
84.0000.0000 to 84.FFFF.FFFF	2	HAE_MEM <15>	HAE_MEM <14>	HAE_MEM <13>	HAE_MEM <12>	HAE_MEM <11>	CPU<31>
85.0000.0000 to 85.FFFF.FFFF	3	HAE_MEM <7>	HAE_MEM <6>	HAE_MEM <5>	HAE_MEM <4>	HAE_MEM <3>	HAE_MEM <2>

Figure 1–9 shows the mapping for region 1.

Figure 1-9 PCI Memory Sparse-Space Address Generation - Region 1

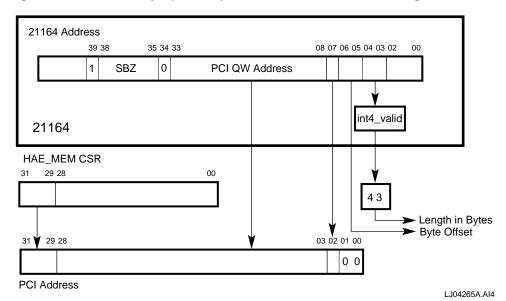


Figure 1–10 shows the mapping for region 2.

Figure 1–10 PCI Memory Sparse-Space Address Generation – Region 2

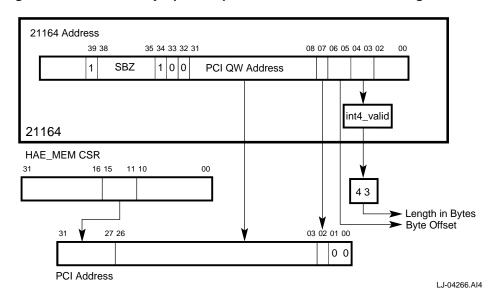


Figure 1–11 shows the mapping for region 3.

Figure 1–11 PCI Memory Sparse-Space Address Generation – Region 3

1.8 PCI Sparse I/O Space

The PCI sparse I/O space is divided into two regions — region A and region B. Region A addresses the lower 32MB of PCI I/O space and is never relocated. This region will be used to address the (E)ISA devices. Region B is used to address a further 32MB of PCI I/O space and is relocatable using the HAE_IO register.

A.8.1 Hardware Extension Register (HAE_IO)

In sparse space, the 21164 address bits <7:3> are used to encode byte enable bits, size bits, and the low-order ad<2:0>. This means that there are now five fewer address bits available to generate the PCI physical address.

The system provides two PCI sparse I/O space regions and allows one region to be relocated by way of bits in the HAE IO register.

A.8.2 PCI Sparse I/O Space Access Operation

The PCI sparse I/O space is located in the range 85.8000.0000 to 85.FFFF.FFFF. This space has characteristics similar to the PCI sparse memory space. This 2GB 21164 address segment maps to two 32MB regions of PCI I/O address space. A read or write transaction to this space causes a PCI I/O read or write command. The highorder PCI address bits are handled as follows:

- Region A: This region has $addr_h < 34:30 > 10110$ and addresses the lower 32MB of PCI sparse I/O space. Signals ad<31:25> are asserted at zero by the hardware (see Figure 1–12). Region A is used to address (E)ISA address space (the EISA 64KB I/O space cannot be relocated). Figure 1–12 shows PCI sparse I/O space address translation in Region A.
- Region B: This region has **addr_h<34:30>** = 10111 and addresses a relocatable 32MB of PCI sparse I/O space. This 32MB segment is relocated by assigning ad<31:25> to equal HAE IO<31:25>. Figure 1–13 shows PCI sparse I/O space address translation in Region B.

The remainder of the PCI I/O address is formed in the same way for both regions:

- ad<24:3> are derived from addr h<29:8>.
- ad<2:0> are defined in Table 1-8.

PCI Sparse I/O Space

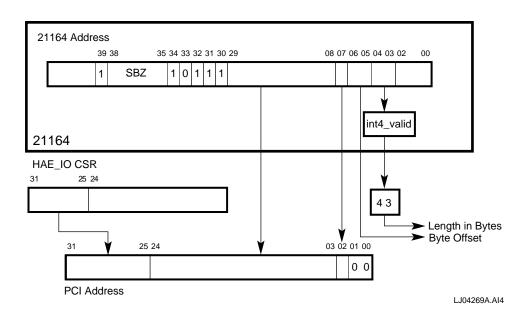
Table 1–8 contains the PCI sparse I/O space read/write encodings.

Table 1-8 PCI Sparse I/O Space Read/Write Encodings

Siz	ze	Byte Offset	21164			Data-In Register
addr_h	addr_h<4:3>		addr_h Instruction <6:5> Allowed ad		PCI Byte Enable ¹	Byte Lanes 630
		00		A<7> ² ,00	1110	OOOX
		01		A<7>,00	1101	OOXO
Byte	00	10	LDL,STL	A<7>,00	1011	OXOO
		11		A<7>,00	0111	XOOO
		00		A<7>,00	1100	OOXX
$Word^3$	01	01	LDL,STL	A<7>,00	1001	OXXO
		10		A<7>,00	0011	XXOO
		00		A<7>,00	1000	OXXX
Tribyte	10	01	LDL,STL	A<7>,00	0001	XXXO
Longword	11	00	LDL,STL	A<7>,00	0000	XXXX
Quadword	11	11	LDQ,STQ	000	0000	XXXX XXXX

¹ Byte enable set to 0 indicates that byte lane carries meaningful data.

² A<7> = addr_h<7>.


³ Missing entries (for example, word size with 21164 address = 11) enjoy UNPREDICTABLE results.

LJ-04268.AI4

21164 Address 35 34 33 32 31 30 29 08 07 06 05 04 03 02 SBZ 1 0 1 1 0 <29:8> int4_valid 21164 43 ➤ Length in Bytes Byte Offset 25 24 03 02 01 00 0 0 0000000 PCI Address

Figure 1–12 PCI Sparse I/O Space Address Translation (Region A, Lower 32MB)

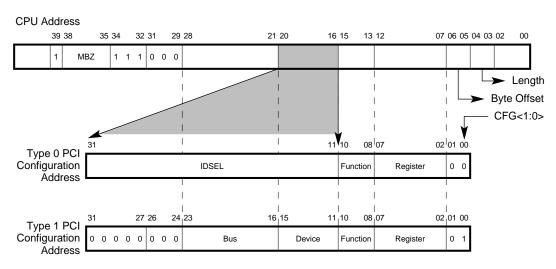
Figure 1–13 PCI Sparse I/O Space Address Translation (Region B, Higher Area)

1.9 PCI Configuration Space

The PCI configuration space is located in the range 87.0000.0000 to 87.1FFF.FFFF. Software is advised to clear PYXIS_CTRL<FILL_ERR_EN> when probing for PCI devices by way of configuration space read transactions. This will prevent the 21174 from generating an ECC error if no device responds to the configuration cycle (and random data is picked up on the PCI bus).

A read or write transaction to this space causes a configuration read or write cycle on the PCI. There are two classes of targets that are selected, based on the value of the CFG register.

- Type 0 These are targets on the primary 64-bit PCI bus. These targets are selected by making CFG<1:0>=0.
- Type 1 These are targets on the secondary 32-bit PCI bus (that is, behind a PCI-to-PCI bridge). These targets are selected by making CFG<1:0> = 1.


Note: CFG<1:0> = 10 or 11 are reserved (by the PCI specification).

Software must program the CFG register before running a configuration cycle. Sparse address decoding is used. Signals **addr_h<6:3>** are used to generate both the length of the PCI transaction in bytes and the byte enable bits. Signals **ad<1:0>** are obtained from CFG<1:0>. Signals **addr_h<28:7>** correspond to **ad<23:2>** and provide the configuration command information (such as which device to select). The high-order **ad<31:24>** are always zero.

Figure 1–14 depicts PCI configuration space (sparse). Figure 1–15 shows PCI configuration space (dense).

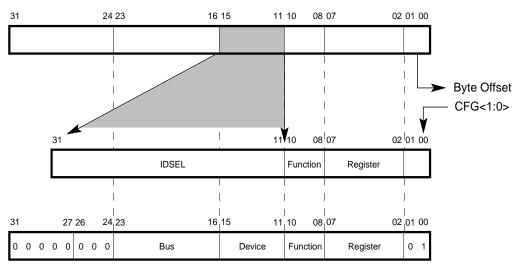


Figure 1–14 PCI Configuration Space Definition (Sparse)

LJ04270A.AI4

Figure 1–15 PCI Configuration Space Definition (Dense)

LJ-05400.AI4

Peripherals are selected during a PCI configuration cycle if the following three conditions are met:

- 1. Their IDSEL pin is asserted.
- The PCI bus command indicates a configuration read or write.
- 3. Address bits $\langle 1:0 \rangle$ are 00.

Address bits <7:2> select a Dword (longword) register in the peripheral's 256-byte configuration address space. Transactions can use byte masks.

Peripherals that integrate multiple functional units (for example, SCSI and Ethernet) can provide configuration space for each function. Address bits <10:8> can be decoded by the peripheral to select one of eight functional units.

Signals ad<31:11> are available to generate the IDSEL bits (note that IDSEL bits behind a PCI-to-PCI bridge are determined from the device field encoding of a type 1 access). The IDSEL pin of each device is connected to a unique PCI address bit from ad<31:11>. The binary value of addr_h<20:16> is used to select which ad<31:11> is asserted, as shown in Table A-9.

Table A-9 CPU Address to IDSEL Conversion

CPU Address <20:16>	ad<31:11> - IDSEL
00000	0000 0000 0000 0000 0000 1
00001	0000 0000 0000 0000 0001 0
00010	0000 0000 0000 0000 0010 0
00011	0000 0000 0000 0000 0100 0
10011	0100 0000 0000 0000 0000 0
10100	1000 0000 0000 0000 0000 0
10101	0000 0000 0000 0000 0000 0
	(No device selected)
	_
11111	0000 0000 0000 0000 0000 0

Note:

If a quadword access is specified for the configuration cycle, then the least significant bit of the register number field (such as ad<2>) must be zero. Quadword transactions must access quadword aligned registers.

If the PCI cycle is a configuration read or write cycle but the **ad<1:0>** are 01 (that is, a type 1 transfer), then a device on a hierarchical bus is being selected via a PCI-to-PCI bridge. This cycle is accepted by the PCI-to-PCI bridge for propagation to its secondary PCI bus. During this cycle, <23:16> selects a unique bus number, and address <15:8> selects a device on that bus (typically decoded by the PCI-to-PCI bridge to generate the secondary PCI address pattern for IDSEL). In addition, address <7:2> selects a Dword (longword) in the device's configuration space.

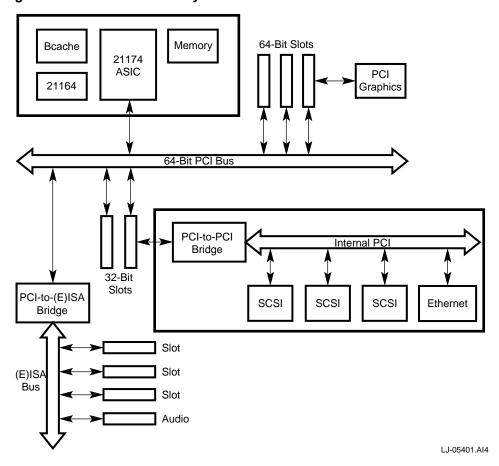
Table 1–10 contains the PCI configuration space read/write encodings.

Table 1-10 PCI Configuration Space Read/Write Encodings

Si	ize	Byte Offset	21164		PCI Byte	Data-In Register
addr_	addr_h<4:3>		Instruction Allowed			Byte Lanes 630
		00		A<7> ² ,00	1110	OOOX
		01		A<7>,00	1101	OOXO
Byte	00	10	LDL,STL	A<7>,00	1011	OXOO
		11		A<7>,00	0111	XOOO
		00		A<7>,00	1100	OOXX
$Word^3$	01	01	LDL,STL	A<7>,00	1001	OXXO
		10		A<7>,00	0011	XXOO
		00		A<7>,00	1000	OXXX
Tribyte	10	01	LDL,STL	A<7>,00	0001	XXXO
Longword	11	00	LDL,STL	A<7>,00	0000	XXXX
Quadword	11	11	LDQ,STQ	000	0000	XXXX XXXX

¹ Byte enable set to 0 indicates that byte lane carries meaningful data.

Each PCI-to-PCI bridge can be configured via PCI configuration cycles on its primary PCI interface. Configuration parameters in the PCI-to-PCI bridge will identify the bus number for its secondary PCI interface and a range of bus numbers that may exist hier-



 $^{^{2}}$ A<7> = **addr_h<7>.**

³ Missing entries (for example, word size with $addr_h < 6:5 > = 11$) generate UNPREDICTABLE results.

archically behind it. If the bus number of the configuration cycle matches the bus number of the bridge chip's secondary PCI interface, it will accept the configuration cycle, decode it, and generate a PCI configuration cycle with **ad<1:0>** = 00 on its secondary PCI interface. If the bus number is within the range of bus numbers that may exist hierarchically behind its secondary PCI interface, the bridge chip passes the PCI configuration cycle on unmodified (ad<1:0>=01). It will be accepted by a bridge further downstream. Figure 1–16 shows a typical PCI hierarchy. This is only one example of how the 21174 can be used in a system design.

Figure 1-16 PCI Bus Hierarchy

1.10 PCI Special/Interrupt Cycles

PCI special/interrupt cycles are located in the range 87.2000.0000 to 87.3FFF.FFFF.

The Special cycle command provides a simple message broadcasting mechanism on the PCI. The Intel processor uses this cycle to broadcast processor status; but in general it may be used for logical sideband signaling between PCI agents. The special cycle contains no explicit destination address, but is broadcast to all agents. Each receiving agent must determine if the message contained in the data field is applicable to it.

A write access in the range 87.2000.0000 to 87.3FFF.FFFF causes a special cycle on the PCI. The 21164's write data will be passed unmodified to the PCI. Software must write the data in longword 0 of the hexword with the following fields:

- Bytes 0 and 1 contain the encoded message.
- Bytes 2 and 3 are message dependent (optional) data fields.

A read of the same address range will result in an Interrupt Acknowledge cycle on the PCI and return the vector data provided by the PCI-EISA bridge to the 21164.

1.11 Hardware-Specific and Miscellaneous Register Space

These registers are located in the range 87.4000.0000 to 87.FFFF.FFFF.

Table A–11 lists the address map for the hardware-specific registers.

Table A-11 Hardware and Miscellaneous Address Map

CPU Address <39:28>	Selected Region
1000 0111 0100	General control, diagnostic, performance monitoring, and error logging registers
1000 0111 0101	Memory control registers
1000 0111 0110	PCI address translation (scatter-gather, windows, and so on)
1000 0111 0111	Reserved
1000 0111 1000	Miscellaneous registers
1000 0111 1001	Power management registers
1000 0111 1010	Interrupt controller registers
1000 0111 11xx	Flash ROM read/write space – for programming

The address space here is a hardware-specific variant of sparse-space encoding. For the CSRs, addr h<27:6> specifies a longword address where addr h<5:0> must be zero. All the 21174 registers are accessed with a LW granularity. For more specific details on the 21174 CSRs, see the Digital Semiconductor 21174 Core Logic Chip Technical Reference Manual. For the flash ROM, addr h<30:6> defines a byte address. The fetched byte is always returned in the first byte lane (bits <7:0>).

1.12 PCI to Physical Memory Address

Incoming PCI addresses (32-bit or 64-bit) have to be mapped to the 21164 cached memory space (8GB). The 21174 provides five programmable address windows that control access of PCI peripherals to system memory.

The mapping from the PCI address to the physical address can be direct, direct mapped (physical mapping with an address offset), or scatter-gather mapped (virtual mapping). These five address windows are referred to as the PCI target windows.

Window 4 maps directly, using the "Monster Window" with dual-address cycles (DAC), where **ad<33:0>** equals **addr_h<33:0>**.

The following three registers are associated with windows <3:0>:

- Window base (W BASE) register
- Window mask (W_MASK) register
- Translated base (T_BASE) register

In addition, there is an extra register associated with window 3 only. This is the window DAC register and is used for PCI 64-bit addressing (that is, the DAC mode). The following text applies only to windows <3:0>.

The window mask register provides a mask corresponding to ad<31:20> of an incoming PCI address. The size of each window can be programmed to be from 1MB to 4GB in powers of two, by masking bits of the incoming PCI address using the window mask register, as shown in Table A-12. (Note that the mask field pattern was chosen to speed up timing-critical logic circuits.)

Table A–12 shows the PCI target window mask fields.

Table A-12 PCI Target Window Mask Register Fields¹

PCI_MASK<31:20>	Size of Window	Value of n	
0000 0000 0000	1MB	20	
0000 0000 0001	2MB	21	
0000 0000 0011	4MB	22	
0000 0000 0111	8MB	23	
0000 0000 1111	16MB	24	
0000 0001 1111	32MB	25	
0000 0011 1111	64MB	26	
0000 0111 1111	128MB	27	
0000 1111 1111	256MB	28	
0001 1111 1111	512MB	29	
0011 1111 1111	1GB	30	
0111 1111 1111	2GB	31	
1111 1111 1111	4GB	32	
Otherwise	UNPREDICTABLE	_	

¹ Only the incoming **ad<31:n>** are compared with <31:*n*> of the window base register, as shown in Figure 1–18. If n=32, no comparison is performed.

Based on the value of the window mask register, the unmasked bits of the incoming PCI address are compared with the corresponding bits of each window's window base register. If one of the window base registers and the incoming PCI address match, then the PCI address has hit the PCI target window. Otherwise, the PCI address has missed the window. A window enable bit, W_EN, is provided in each window's window base register to allow windows to be independently enabled $(W_EN = 1)$ or disabled $(W_EN = 0)$.

If a hit occurs in any of the four windows that are enabled, then the 21174 will respond to the PCI cycle by asserting the signal devsel. The PCI target windows must be programmed so that their address ranges do not overlap; otherwise, the results are UNDEFINED.

The window base address must be on a naturally aligned boundary address depending on the size of the window¹. This rule is not particularly difficult to obey, because the address space of any PCI device can be located anywhere in the PCI's 4GB memory space, and this scheme is compatible with the PCI specification:

A PCI device specifies the amount of memory space it requires via the Base registers in its configuration space. The Base Address registers are implemented so that the address space consumed by the device is a power of two in size, and is naturally aligned on the size of the space consumed.

A PCI device need not use all the address range it consumes (that is, the size of the PCI address window defined by the base address) and it does not need to respond to unused portions of the address space. The one exception to this is a PCI bridge that requires two additional registers (the base and limit address registers). These registers accurately specify the address space that the bridge device will respond to² and are programmed by the power-on self-test (POST) code. The 21174, as a PCI host-bridge device, does not have base and limit registers³, but does respond to all the addresses defined by the window base register (that is, all addresses within a window).

Figure 1–17 shows how the DMA address ranges of a number of PCI devices are accepted by the PCI-window ranges. PCI devices are allowed to have multiple DMA address ranges, as shown for device 2. The example also shows that the window can be larger than the corresponding device's DMA address range, as shown for device 0. Device 1 and device 2 have address ranges that are accepted by one window. Each window determines whether direct mapping or scatter-gather mapping is used to access physical memory.

³ Host-bridge devices, because they are under system control, are free to violate the rules.

¹ For example, a 4MB window cannot begin at address 1MB. It must start at addresses 4MB, 8MB, 12MB,

² A PCI bridge device responds to all addresses in the range: base ≤ address < limit.

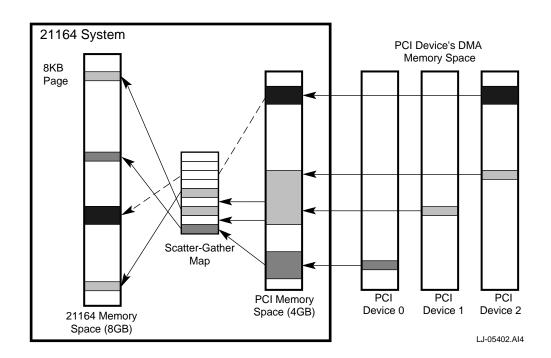
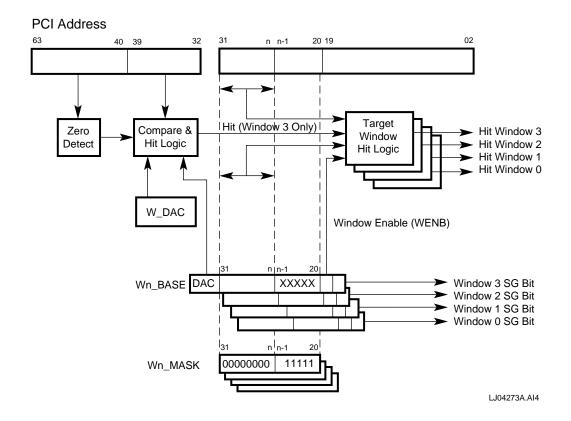


Figure 1–17 PCI DMA Addressing Example

Figure 1–18 shows the PCI window logic. The comparison logic associated with ad<63:32> is only used for DAC¹ mode; and only if enabled by a bit in the window base register for window 3. This logic is only applicable to window 3. The remaining windows only recognize 32-bit PCI addresses (that is, SAC² cycles).


For a hit to occur in a DAC address, ad<63:40> must be zero, ad<39:32> must match the window DAC base register, and ad<31:20> must also have a compare hit. This scheme allows a naturally aligned, 1MB-4GB PCI window to be placed anywhere in the first 1TB of a 64-bit PCI address. When an address match occurs with a PCI target window, the 21174 translates the 32-bit PCI address to addr h<33:0>.

² Single-address cycle (SAC) — all 32-bit addresses. A PCI device must use SAC if <63:32> equals 0.

¹ Dual-address cycle (DAC) — only issued if <63:32> are nonzero for a 64-bit address.

Figure 1–18 PCI Target Window Compare

1.13 Direct-Mapped Addressing

The target address is translated by direct mapping or scatter-gather mapping as determined by the Wx_BASE_SG (scatter-gather) bit of the window's PCI base register. If the Wx_BASE_SG bit is clear, the DMA address is direct mapped, and the translated address is generated by concatenating bits from the matching window's translated base register (T_BASE) with bits from the incoming PCI address. The bits involved in the concatenation are defined by the window mask register as shown in Table A–13. The unused bits of the translated base register (also in Table A–13) must be cleared (that is, the hardware performs an AND-OR operation to accomplish the concatenation). Because memory is located in the lower 8GB of the 21164 address space, the 21174 ensures (implicitly) that address bits <39:33> are always zero.

Because the translated base is simply concatenated to the PCI address, then the direct mapping is to a naturally aligned memory region. For example, a 4MB direct-mapped window will map to any 4MB region in main memory that falls on a 4MB boundary (for instance, it is not possible to map a 4MB region to the main memory region 1MB–5MB).

Table A–13 lists direct-mapped PCI target address translations.

Table A–13 Direct-Mapped PCI Target Address Translation (Sheet 1 of 2)

W_MASK<31:20>	Size of Window	Translated Address <32:2>
0000 0000 0000	1MB	Translated Base<33:20> : ad<19:2>
0000 0000 0001	2MB	Translated Base<33:21> : ad<20:2>
0000 0000 0011	4MB	Translated Base<33:22> : ad<21:2>
0000 0000 0111	8MB	Translated Base<33:23> : ad<22:2>
0000 0000 1111	16MB	Translated Base<33:24> : ad<23:2>
0000 0001 1111	32MB	Translated Base<33:25> : ad<24:2>
0000 0011 1111	64MB	Translated Base<33:26> : ad<25:2>
0000 0111 1111	128MB	Translated Base<33:27> : ad<26:2>
0000 1111 1111	256MB	Translated Base<33:28> : ad<27:2>
0001 1111 1111	512MB	Translated Base<33:29> : ad<28:2>
0011 1111 1111	1GB	Translated Base<33:30> : ad<29:2>

Scatter-Gather Addressing

Table A-13 Direct-Mapped PCI Target Address Translation

1	Sr	eet	2	of	2

W_MASK<31:20>	Size of Window	Translated Address <32:2>
0111 1111 1111	2GB	Translated Base<33:31> : ad<30:2>
1111 1111 1111	4GB	Translated Base<33:32> : ad<31:2>
Otherwise	Not supported	_

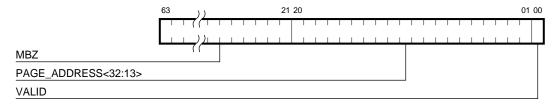
1.14 Scatter-Gather Addressing

If the Wx_BASE_SG bit of the PCI base register is set, then the translated address is generated by a lookup table. This table is called a scatter-gather map. Figure 1–20 shows the scatter-gather addressing scheme — full details of this scheme are provided later in Section 1.15, but for now a quick description is provided. The incoming PCI address is compared to the PCI window addresses looking for a hit. The translated base register, associated with the PCI window that is hit, is used to specify the starting address of the scatter-gather map table in memory. Bits of the incoming PCI address are used as an offset from this starting address, to access the scatter-gather PTE. This PTE, in conjunction with the remaining, least-significant PCI address bits, forms the required memory address.

Each scatter-gather map entry maps an 8KB page of PCI address space into an 8KB page of the 21164 address space. This offers a number of advantages to software:

- Performance: ISA devices map to the lower 16MB of memory. The Windows NT operating system currently copies data from here to user space. The scatter-gather map eliminates the need for this copy operation.
- User I/O buffers might not be physically contiguous or contained within a page.
 With scatter-gather mapping, software does not have to manage the scattered nature of the user buffer by copying data.

In the personal computer (PC) world, scatter-gather mapping is not an address translation scheme but is used to signify a DMA transfer list. An element in this transfer list contains the DMA address and the number of data items to transfer. The DMA device fetches each item of the list until the list is empty. Many of the PCI devices (such as an EISA bridge) support this form of scatter-gather mapping.



Scatter-Gather Addressing

Each scatter-gather map page table entry (PTE) is a quadword and has a valid bit in bit position 0, as shown in Figure 1–19. Address bit 13 is at bit position 1 of the map entry. Because the 21174 implements valid memory addresses up to 16GB, then bits <63:22> of the scatter-gather map entry must be programmed to 0. Bits <21:1> of the scatter-gather map entry are used to generate the physical page address. The physical page address is appended to **ad<12:5>** of the incoming PCI address to generate the memory address.

System implementations may support less than 16GB of physical addressing; however, any unused address bits must be forced to zero. Otherwise, behavior will be UNPREDICTABLE.

Figure 1-19 Scatter-Gather PTE Format

LJ-04275.AI4

The size of the scatter-gather map table is determined by the size of the PCI target window as defined by the window mask register shown in Table A–14. The number of entries in the table equals the window size divided by the page size (8KB). The size of the table is simply the number of entries multiplied by 8 bytes.

The scatter-gather map table address is obtained from the translated base register and the PCI address as shown in Table A–14.

Table A-14 Scatter-Gather Mapped PCI Target Address Translation (Sheet 1 of 2)

W_MASK<31:20>	Size of SG Map Table	Translated Address <32:2>
0000 0000 0000	1KB	Translated Base<33:10>1 : ad<19:13>
0000 0000 0001	2KB	Translated Base<33:11>: ad<20:13>
0000 0000 0011	4KB	Translated Base<33:12>: ad<21:13>
0000 0000 0111	8KB	Translated Base<33:13> : ad<22:13>
0000 0000 1111	16KB	Translated Base<33:14>: ad<23:13>

Scatter-Gather TLB

Table A-14 Scatter-Gather Mapped PCI Target Address Translation (Sheet 2 of 2)

W_MASK<31:20>	Size of SG Map Table	Translated Address <32:2>
0000 0001 1111	32KB	Translated Base<33:15> : ad<24:13>
0000 0011 1111	64KB	Translated Base<33:16>: ad<25:13>
0000 0111 1111	128KB	Translated Base<33:17>: ad<26:13>
0000 1111 1111	256KB	Translated Base<33:18> : ad<27:13>
0001 1111 1111	512KB	Translated Base<33:19>: ad<28:13>
0011 1111 1111	1MB	Translated Base<33:20>: ad<29:13>
0111 1111 1111	2MB	Translated Base<33:21>: ad<30:13>
1111 1111 1111	4MB	Translated Base<33:22> : ad<31:13>

¹ Unused bits of the Translated Base Register must be zero for correct operation.

1.15 Scatter-Gather TLB

An eight-entry translation lookaside buffer (TLB) is provided in the 21174 for scatter-gather map entries. The TLB is a fully associative cache and holds the eight most-recent scatter-gather map lookup PTEs. Four of these entries can be locked to prevent their being displaced by the hardware TLB-miss handler. Each of the eight TLB entries holds a PCI address for the tag and four consecutive 8KB 21164 page addresses as the TLB data, as shown in Figure 1–20.

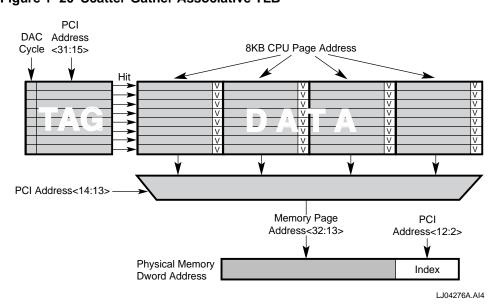


Figure 1-20 Scatter-Gather Associative TLB

Each time an incoming PCI address hits in a PCI target window that has scatter-gather translation enabled, **ad**<**31:15**> are compared with the 32KB PCI page address in the TLB tag. If a match is found, the required 21164 page address is one of the four items provided by the data of the matching TLB entry. PCI address **ad**<**14:13**> selects the correct 8KB 21164 page from the four pages fetched.

A TLB hit avoids having to look up the scatter-gather map PTEs in memory, resulting in improved system performance. If no match is found in the TLB, the scatter-gather map lookup is performed and four PTE entries are fetched and written over an existing entry in the TLB.

The TLB entry to be replaced is determined by a round-robin algorithm on the unlocked entries. Coherency of the TLB is maintained by software write transactions to the SG_TBIA (scatter-gather translation buffer invalidate all) register.

The tag portion contains a DAC flag to indicate that the PCI tag address <31:15> corresponds to a 64-bit DAC address. Only one bit is required instead of the high-order PCI address bits <39:32> because only one window is assigned to a DAC cycle, and the window-hit logic has already performed a comparison of the high-order bits with the PCI DAC base register. Figure 1–21 shows the entire translation from PCI address to physical address on a window that implements scatter-gather

Scatter-Gather TLB

mapping. Both paths are indicated — the right side shows the path for a TLB hit, while the left side shows the path for a TLB miss. The scatter-gather TLB is shown in a slightly simplified, but functionally equivalent form.

A.15.1 Scatter-Gather TLB Hit Process

The process for a scatter-gather TLB hit is as follows:

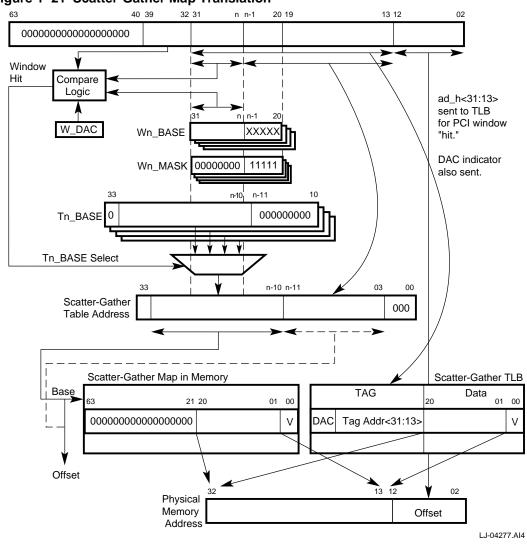
- 1. The window compare logic determines if the PCI address has hit in one of the four windows, and the PCI_BASE<SG> bit determines if the scatter-gather path should be taken. If window 3 has DAC-mode enabled, and the PCI cycle is a DAC cycle, then a further comparison is made between the high-order PCI bits and the PCI DAC BASE register.
- 2. PCI address ad<31:13> is sent to the TLB associative tag together with the DAC hit indication. If ad<31:13> and the DAC bits match in the TLB, then the corresponding 8KB 21164 page address is read out of the TLB. If this entry is valid, then a TLB hit has occurred and this page address is concatenated with ad<12:2> to form the physical memory address. If the data entry is invalid, or if the TAG compare failed, then a TLB miss occurs.

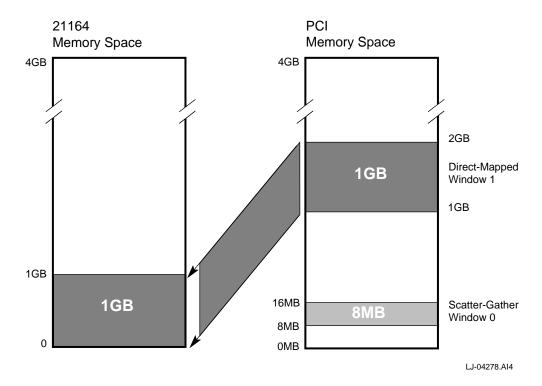
A.15.2 Scatter-Gather TLB Miss Process

The process for a scatter-gather TLB miss is as follows:

- 1. The relevant bits of the PCI address (as determined by the window mask register) are concatenated with the relevant translated base register bits to form the address used to access the scatter-gather map entry (PTE) from a table located in main memory.
- 2. Bits <20:1> of the map entry (PTE from memory) are used to generate the physical page address, which is appended to the page offset to generate the physical memory address. The TLB is also updated at this point, using a round-robin algorithm, with the four PTE entries that correspond to the 32KB PCI page address that first missed the TLB. The tag portion of the TLB is loaded with this PCI page address, and the DAC bit is set if this PCI cycle is a DAC cycle.
- 3. If the requested PTE is marked invalid (bit 0 is clear), then a TLB invalid entry exception is taken.

Scatter-Gather TLB




Figure 1-21 Scatter-Gather Map Translation

1.16 Suggested Use of a PCI Window

Figure 1–22 shows the PCI window assignment after power is turned on (configured by firmware), and Table A–15 lists the details. PCI window 0 was chosen for the 8MB to 16MB EISA region because this window incorporates the **mem_cs_l** logic. PCI window 3 was not used as it incorporates the DAC cycle logic. PCI window 1 was chosen arbitrarily for the 1GB, direct-mapped region, and PCI window 2 is not assigned.

Figure 1-22 Default PCI Window Allocation

Suggested Use of a PCI Window

Table A–15 lists the PCI window power-up configuration characteristics.

Table A-15 PCI Window Power-Up Configuration

PCI Window	Assignment	Size	Comments
0	Scatter-gather	8MB	Not used by firmware; mem_cs_l disabled
1	Direct-mapped	1GB	Mapped to 0GB to 1GB of main memory
2	Disabled	_	_
3	Disabled	_	_

A.16.1 Peripheral Component Architecture Compatibility Addressing and Holes

The peripheral component architecture allows certain (E)ISA devices to respond to hardwired memory addresses. An example is a VGA graphics device that has its frame buffer located in memory address region A0000-BFFFF. Such devices "pepper" memory space with holes, which are collectively known as peripheral component compatibility holes.

The PCI-EISA bridge decodes PCI addresses and generates a signal, mem_cs_l, which takes into account the various PC compatibility holes.

A.16.2 Memory Chip Select Signal mem_cs_l

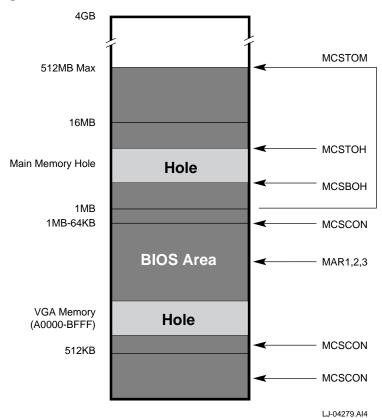
The PCI-EISA bridge can be made using the following two chips:

- Intel 82374EB EISA System Component (ESC)
- Intel 82375EB PCI-EISA Bridge (PCEB)

The PCI-EISA bridge provides address decode logic with considerable attributes (such as read only, write only, VGA frame buffer, memory holes, and BIOS shadowing) to help manage the EISA memory map and peripheral component compatibility holes.

This is known as main memory decoding in the PCI-EISA chip, and results in the generation of the memory chip select (mem_cs_l) signal. One exception is the VGA memory hole region that never asserts **mem_cs_l**. If enabled, the 21174 uses this signal with the W0_BASE register.

In Figure 1–23, the two main holes are shown lightly shaded, while the **mem_cs_l** range is darkly shaded.

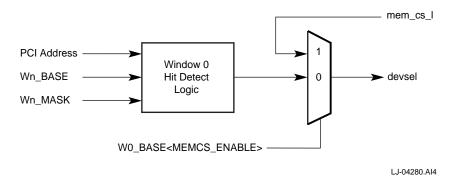


Suggested Use of a PCI Window

This **mem_cs_l** range in Figure 1–23 is subdivided into several portions (such as the BIOS areas) that are individually enabled/disabled using CSRs as listed here:

- The MCSTOM (top of memory) register has a 2MB granularity and can be programmed to select the regions from IMB up to 512MB.
- The MCSTOH (top of hole) and MCSBOH (bottom of hole) registers define a memory hole region where **mem_cs_l** is not selected. The granularity of the hole is 64KB.
- The MAR1,2,3 registers enable various BIOS regions.
- The MCSCON (control) register enables the mem cs I decode logic, and in addition selects a number of regions (0KB to 512KB).
- The VGA memory hole region never asserts **mem_cs_l**.

Figure 1-23 mem_cs_l Decode Area



Suggested Use of a PCI Window

Note: For more detail, please refer to the *Intel 82378 System I/O Manual*.

As shown in Figure 1–24, PCI window 0 in the 21174 can be enabled to accept the **mem_cs_l** signal as the PCI memory decode signal. With this path enabled, the PCI window hit logic simply uses the **mem_cs_l** signal. For example, if **mem_cs_l** is asserted, then a PCI window 0 hit occurs and the **devsel** signal is asserted on the PCI.

Figure 1-24 mem_cs_I Logic

Consequently, the window address area must be large enough to encompass the **mem_cs_l** region programmed into the PCI-EISA bridge. The remaining window attributes are still applicable and/or required:

- The Wx_BASE_SG bit in the W0_BASE register determines if scatter-gather or direct-mapping is applicable.
- The W0_MASK register size information must match the **mem_cs_l** size for the scatter-gather and direct-mapping algorithms to correctly use the translated base register.
- The **mem_cs_l** enable bit, W0_BASE<MEMCS_ENABLE>, takes precedence over W0_BASE<W_EN>.

Supporting Products

This appendix lists sources for components and accessories that are not included with the AlphaPC 164UX.

B.1 Memory

Dual inline memory modules (DIMMs) are available from the following sources:

Samsung Semiconductor Inc. 3566 North First St.

San Jose, CA 95134 USA

Phone: 1-408-544-4322

Table B-1 Samsung DIMM Part Number List

Size	Part Number (# of Bank)	Width	ECC
16MB	KMM374S203BTN (2 Bank) KMM374S203BTL (2 Bank)	72bit	Yes
32MB	KMM374S403ATN (2 Bank) KMM374S403BTN (2 Bank) KMM374S403BTL (2 Bank)	72bit	Yes
64MB	KMM374S803AT (2 Bank) KMM374S823AT (4 Bank) KMM374S823ATL (4 Bank)	72bit	Yes
128MB	KMM374S1600AT (2 Bank) KMM374S1623AT (4 Bank) KMM374S1623ATL (4 Bank)	72bit	Yes

VisionTek 1175 Lakeside Dr. Gurnee,IL 60031

Memory

Phone: 847-360-7500 Fax: 847-360-7403

Table B-2 VisionTek DIMM Part Number List

Size	Part Number	Width	ECC
16MB	VT16455.0	72bit	Yes
64MB	VT164.0	72bit	Yes
128MB	VT164V6.0	72bit	Yes

Viking Components 11 Columbia

Laguna Hills, Ca 92656 Phone: 800-338-2361 Fax: 408-643-7250

Table B-3 Viking Components DIMM Part Number List

Size	Part Number	Width	ECC
16MB	VE2721U4SN3-DC01	72bit	Yes
32MB	VE4721U4SN3-DC01	72bit	Yes
64MB	VE8721U4SN3-DC01	72bit	Yes
128MB	VE16722U4SN3-DC01	72bit	Yes

QesTec, Inc.

23 Midstate Drive, Suite 104

Midstate Office Park Auburn, Ma 01501 Phone: 508-832-5006

Fax: 508-832-5441

Table B-4 QesTec DIMM Part Number List

Size	Part Number	Width	ECC
16MB	QS272SG	72bit	Yes
32MB	QS472SG	72bit	Yes
64MB	QS872SG	72bit	Yes

Thermal Products

DeskStation Technology - Dist. for Dense-Pac 15729 College Blvd

Lenexa, KS 66219 Phone: 800-793-3375

Table B-5 Dense-Pac Microsystems DIMM Part Number List

Size	Part Number	Width	ECC
64MB	DN06408x72-00	72bit	Yes
128MB	DN12816x72-00	72bit	Yes
256MB	DN25632x72-00	72bit	Yes

B.2 Thermal Products

Thermal Products Components included in this heat-sink and fan solution are heat sink, GRAFOIL pad, two hex nuts, heat-sink clips, 60-mm fan, and four screws. These are available from:

United Machine and Tool Design River Road

Fremont, NH 03044

Phone: 603-642-5040 Fax: 603-642-5819 PN 70-32810-02

B.3 Power Supply

An ATX form-factor power supply, suitable for use with the AlphaPC 164UX (+3.3 V, +5 V, -5 V, +12 V, -12 V), is available from:

Emacs Electronics USA, Inc. 1410 Gail Borden Place C-4

El Paso, TX 79935 Phone: 915-599-2688

PN AP2-5300F (300 W)

Enclosure

B.4 Enclosure

An enclosure, suitable for housing the AlphaPC 164UX and its power supply, is available from:

Axxion

11 B Leigh Fisher El Paso,Tx. 79906 Phone: 915-772-0360 Fax: 915-778-3200

PN: DL17

Addtronics Industrial 43263 Osgood Road Fremont, Ca 94539 Phone: 510-490-9898 Fax: 510-490-7132 PN EX-6890A

California PC Products 205 Apollo Way Hollister,Ca. 95023 Phone: 408-637-2250 Fax: 510-490-7132

Fax: 510-490-7132 PN: 6D3APD,6C6APD

Support, Products, and Documentation

If you need technical support, an Alpha CPU brochure, or help deciding which documentation best meets your needs, visit the Samsung Semicondcutor World Wide Web Internet site:

http://www.samsungsemi.com

You can also call or e-mail to Samsung CPU Marketing Team. Please use the following information lines for support.Samsung Alpha Products

For documentation and general information:		
Korea	82-331-209-3285	
United States and Canada:	1-408-544-4510	
Europe	49-6196-663410	
Electronic mail address:	alphainfo@sec.samsung.com	
For technical support:		
Phone	82-331-209-3282	
Fax	82-331-209-4492	
Electronic mail address:	alphatech@sec.samsung.com	

To order the AlphaPC 164UX motherboard, contact your local distributor. The following tables list some of the semiconductor products available from Samsung Electronics.

Chips	Order Number
Samsung Electronics 21164 Alpha microprocessor (466 MHz)	KP21164-466CN
Samsung Electronics 21164 Alpha microprocessor (500 MHz)	KP21164-500CN
Samsung Electroncis 21164 Alpha microprocessor (533 MHz)	KP21164-533CN
Samsung Electronics 21164 Alpha microprocessor (566 MHz)	KP21164-566CN
Samsung Electroncis 21164 Alpha microprocessor (600 MHz)	KP21164-600CN
Samsung Electronics 21164 Alpha microprocessor (633 MHz)	KP21164-633CN
Samsung Electroncis 21164 Alpha microprocessor (667 MHz)	KP21164-667CN

Motherboard kits include the motherboard and motherboard user's manual.

Motherboard Kits	Order Number
Samsung Electroncis AlphaPC 164LX Motherboard Kit for Windows NT	MB164LX
Samsung Electroncis AlphaPC 164UX Motherboard Kit for Windows NT	MB164UX
Samsung Electroncis AlphaPC 164BX Motherboard Kit for Windows NT	MB164BX

Samsung Alpha Documentation

The following table lists some of the available documentation.

Title	Order Number
21164 Alpha Microprocessor Hardware Reference Manual	KP164-HR-1
21164 Alpha Microprocessor Data Sheet	KP164-DS-1
AlphaPC 164LX Motherboard Technical Reference Manual	MB164LX-TM1
AlphaPC 164LX Motherboard Windows NT User's Manual	MB164LX-UM2
AlphaPC 164UX/BX Motherboard Technical Reference Manual	MB164UX/BX-TM1
AlphaPC 164UX/BX Motherboard Windows NT User's Manual	MB164UX/BX-UM1

You can order the following associated documentation directly from the vendor.

Title	Vendor
Alpha AXP Architecture Reference Manual PN EY-T132E-DP	Call your local distributor or call Butterworth-Heinemann (Digital Press) at 1-800-366-2665
Alpha Architecture Handbook ¹ PN EC-QD2KB-TE	See previous entry
Samsung 21164 Alpha Microprocessor Hardware Reference Manual KP164-HR1-0397	Samsung Electronics Ltd. San #24, Nongseo-ri, Kiheung-eup Yongin-city, Kyungki-do, Korea 449-900
	Online, World Wide Web access at URL http://www.sec.samsung.com
Samsung 21164 Alpha Microprocessor Data Sheet KP164-DS1-0397	See previous entry
Digital Semiconductor 21174 Core Logic Chip Technical Reference Manual PN EC-R12GB-TE (Available Summer, 1997)	Digital Equipment Corporation Digital Semiconductor 77 Reed Road Hudson, MA 01749 USA
	Online, World Wide Web access at URL: http://www.digital.com/semiconductor

Title	Vendor
PCI Local Bus Specification, Revision 2.1 PCI Multimedia Design Guide, Revision 1.0 PCI System Design Guide PCI-to-PCI Bridge Architecture Specification, Revision 1.0 PCI BIOS Specification, Revision 2.1	PCI Special Interest Group U.S. 1–800–433–5177 International 1–503–797–4207 Fax 1–503–234–6762
82420/82430 PCIset ISA and EISA Bridges (includes 82371SB)	Intel Corporation Literature Sales P.O. Box 7641 Mt. Prospect, IL 60056 Phone: 1-800-628-8686 FaxBACK Service: 1-800-628-2283 BBS: 1-916-356-3600
Super I/O Combination Controller (FDC37C666) Data Sheet	Standard Microsystems Corporation 80 Arkay Drive Hauppauge, NY 11788 Phone: 1-516-435-6000 Fax: 1-516-231-6004

 $^{^{1} \} This \ handbook \ provides \ information \ subsequent \ to \ the \ \textit{Alpha AXP Architecture Reference Manual}.$

